0
Research Papers

Performance Investigation of Dual Layer Yttria-Stabilized Zirconia–Samaria-Doped Ceria Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells

[+] Author and Article Information
Ryan J. Milcarek

Department of Mechanical and
Aerospace Engineering,
Syracuse University,
263 Link Hall,
Syracuse, NY 13244-1240
e-mail: rjmilcar@syr.edu

Kang Wang

Department of Mechanical and
Aerospace Engineering,
Syracuse University,
263 Link Hall,
Syracuse, NY 13244-1240
e-mail: kwang08@syr.edu

Michael J. Garrett

Department of Mechanical and
Aerospace Engineering,
Syracuse University,
263 Link Hall,
Syracuse, NY 13244-1240
e-mail: mjgarret@syr.edu

Jeongmin Ahn

Department of Mechanical and
Aerospace Engineering,
Syracuse University,
263 Link Hall,
Syracuse, NY 13244-1240
e-mail: jeongahn@syr.edu

1Corresponding author.

Manuscript received November 21, 2015; final manuscript received January 30, 2016; published online March 2, 2016. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 13(1), 011002 (Mar 02, 2016) (7 pages) Paper No: JEECS-15-1011; doi: 10.1115/1.4032708 History: Received November 21, 2015; Revised January 30, 2016

The performance of yttria-stabilized zirconia (YSZ)–samaria-doped ceria (SDC) dual layer electrolyte anode-supported solid oxide fuel cell (AS-SOFC) was investigated. Tape-casting, lamination, and co-sintering of the NiO–YSZ anode followed by wet powder spraying of the SDC buffer layer and BSCF cathode was proposed for fabrication of these cells as an effective means of reducing the number of sintering stages required. The AS-SOFC showed a significant fuel cell performance of ∼1.9 W cm−2 at 800 °C. The fuel cell performance varies significantly with the sintering temperature of the SDC buffer layer. An optimal buffer layer sintering temperature of 1350 °C occurs due to a balance between the YSZ–SDC contact and densification at low sintering temperature and reactions between YSZ and SDC at high sintering temperatures. At high sintering temperatures, the reactions between YSZ and SDC have a detrimental effect on the fuel cell performance resulting in no power at a sintering temperature of 1500 °C.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Steele, B. C. H. , and Heinzel, A. , 2001, “ Materials for Fuel-Cell Technologies,” Nature, 414(6861), pp. 345–352. [CrossRef] [PubMed]
Gorte, R. J. , 2005, “ Recent Developments Towards Commercialization of Solid Oxide Fuel Cells,” AIChE J., 51(9), pp. 2377–2381. [CrossRef]
de Souza, S. , Visco, S. J. , and De Jonghe, L. C. , 1997, “ Reduced-Temperature Solid Oxide Fuel Cell Based on YSZ Thin-Film Electrolyte,” J. Electrochem. Soc., 144(3), pp. L35–L37. [CrossRef]
Shao, Z. , Zhou, W. , and Zhu, Z. , 2012, “ Advanced Synthesis of Materials for Intermediate-Temperature Solid Oxide Fuel Cells,” Prog. Mater. Sci., 57(4), pp. 804–874. [CrossRef]
Zhao, F. , and Virkar, A. V. , 2005, “ Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters,” J. Power Sources, 141(1), pp. 79–95. [CrossRef]
Lu, Z. G. , Zhou, X. D. , Fisher, D. , Templeton, J. , Stevenson, J. , Wu, N. J. , and Ignatiev, A. , 2010, “ Enhanced Performance of an Anode-Supported YSZ Thin Electrolyte Fuel Cell With a Laser-Deposited Sm0.2Ce0.8O1.9 Interlayer,” Electrochem. Commun., 12(2), pp. 179–182. [CrossRef]
Shi, H. , Ran, R. , and Shao, Z. , 2012, “ Wet Powder Spraying Fabrication and Performance Optimization of IT-SOFCs With Thin-Film ScSZ Electrolyte,” Int. J. Hydrogen Energy, 37(1), pp. 1125–1132. [CrossRef]
Shao, Z. , Haile, S. M. , Ahn, J. , Ronney, P. D. , Zhan, Z. , and Barnett, S. A. , 2005, “ A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack With High Power Density,” Nature, 435(7043), pp. 795–798. [CrossRef] [PubMed]
Tsoga, A. , Gupta, A. , Naoumidis, A. , and Nikolopoulos, P. , 2000, “ Gadolinia-Doped Ceria and Yttria Stabilized Zirconia Interfaces: Regarding Their Application for SOFC Technology,” Acta Mater., 48(18–19), pp. 4709–4714. [CrossRef]
Jiang, Z. , Xia, C. , and Chen, F. , 2010, “ Nano-Structured Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells Via an Infiltration/Impregnation Technique,” Electrochim. Acta, 55(11), pp. 3595–3605. [CrossRef]
Petric, A. , Huang, P. , and Tietz, F. , 2000, “ Evaluation of La-Sr-Co-Fe-O Perovskites for Solid Oxide Fuel Cells and Gas Separation Membranes,” Solid State Ionics, 135(1–4), pp. 719–725. [CrossRef]
Szász, J. , Wankmüller, F. , Wilde, V. , Störmer, H. , Gerthsen, D. , Menzler, N. H. , and Ivers-Tiffée, E. , 2015, “ High-Performance Cathode/Electrolyte Interfaces for SOFC,” ECS Trans., 68(1), pp. 763–771. [CrossRef]
Mai, A. , Haanappel, V. A. C. , Tietz, F. , and Stöver, D. , 2006, “ Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part II. Influence of the CGO Interlayer,” Solid State Ionics, 177(19–25), pp. 2103–2107. [CrossRef]
Uhlenbruck, S. , Moskalewicz, T. , Jordan, N. , Penkalla, H.-J. , and Buchkremer, H. P. , 2009, “ Element Interdiffusion at Electrolyte-Cathode Interfaces in Ceramic High-Temperature Fuel Cells,” Solid State Ionics, 180(4–5), pp. 418–423. [CrossRef]
Jordan, N. , Assenmacher, W. , Uhlenbruck, S. , Haanappel, V . A. C. , Buchkremer, H. P. , Stöver, D. , and Mader, W. , 2008, “ Ce0.8Gd0.2O2-δ Protecting Layers Manufactured by Physical Vapor Deposition for IT-SOFC,” Solid State Ionics, 179(21–26), pp. 919–923. [CrossRef]
Constantin, G. , Rossignol, C. , Briois, P. , Billard, A. , Dessemond, L. , and Djurado, E. , 2013, “ Efficiency of a Dense Thin CGO Buffer Layer for Solid Oxide Fuel Cell Operating at Intermediate Temperature,” Solid State Ionics, 249–250, pp. 98–104. [CrossRef]
Moreno, B. , Fernández-González, R. , Jurado, J. R. , Makradi, A. , Nuñez, P. , and Chinarro, E. , 2014, “ Fabrication and Characterization of Ceria-Based Buffer Layers for Solid Oxide Fuel Cells,” Int. J. Hydrogen Energy, 39(10), pp. 5433–5439. [CrossRef]
Charojrochkul, S. , Choy, K.-L. , and Steele, B. C. H. , 1999, “ Cathode/Electrolyte Systems for Solid Oxide Fuel Cells Fabricated Using Flame Assisted Vapour Deposition Technique,” Solid State Ionics, 121(1–4), pp. 107–113. [CrossRef]
Martínez-Amesti, A. , Larrañaga, A. , Rodríguez-Martínez, L. M. , Nó, M. L. , Pizarro, J. L. , Laresgoiti, A. , and Arriortua, M. I. , 2009, “ Chemical Compatibility Between YSZ and SDC Sintered at Different Atmospheres for SOFC Applications,” J. Power Sources, 192(1), pp. 151–157. [CrossRef]
Wang, Z. , Huang, X. , Lv, Z. , Zhang, Y. , Wei, B. , Zhu, X. , Wang, Z. , and Liu, Z. , 2015, “ Preparation and Performance of Solid Oxide Fuel Cells With YSZ/SDC Bilayer Electrolyte,” Ceram. Int., 41(3), pp. 4410–4415. [CrossRef]
Nguyen, T. L. , Kobayashi, K. , Honda, T. , Iimura, Y. , Kato, K. , Neghisi, A. , Nozaki, K. , Tappero, F. , Sasaki, K. , Shirahama, H. , Ota, K. , Dokiya, M. , and Kato, T. , 2004, “ Preparation and Evaluation of Doped Ceria Interlayer on Supported Stabilized Zirconia Electrolyte SOFCs by Wet Ceramic Processes,” Solid State Ionics, 174(1–4), pp. 163–174. [CrossRef]
Simner, S. P. , Bonnett, J. F. , Canfield, N. L. , Meinhardt, K. D. , Shelton, J. P. , Sprenkle, V. L. , and Stevenson, J. W. , 2003, “ Development of Lanthanum Ferrite SOFC Cathodes,” J. Power Sources, 113(1), pp. 1–10. [CrossRef]
Mesguich, D. , Aymonier, C. , Bassat, J. M. , Mauvy, F. , You, E. , and Watkins, J. J. , 2011, “ Low Temperature Deposition of Undoped Ceria Thin Films in scCO2 as Improved Interlayers for IT-SOFC,” Chem. Mater., 23(24), pp. 5323–5330. [CrossRef]
Oh, E-O. , Whang, C. M. , Lee, Y. R. , Park, S. Y. , Prasad, D. H. , Yoon, K. J. , Son, J. W. , Lee, J. H. , and Lee, H. W. , 2014, “ Extremely Thin Bilayer Electrolyte for Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD),” Adv. Mater., 24, pp. 3373–3377. [CrossRef]
Li, C. , Shi, H. , Ran, R. , Su, C. , and Shao, Z. , 2013, “ Thermal Inkjet Printing of Thin-Film Electrolytes and Buffering Layers for Solid Oxide Fuel Cells With Improved Performance,” Int. J. Hydrogen Energy, 38(22), pp. 9310–9319. [CrossRef]
Chen, D. , Yang, G. , Shao, Z. , and Ciucci, F. , 2014, “ Nanoscaled Sm-Doped CeO2 Buffer Layers for Intermediate-Temperature Solid Oxide Fuel Cells,” Electrochem. Commun., 35, pp. 131–134. [CrossRef]
Ruder, A. , Buchkremer, H. P. , Jansen, H. , Malléner, W. , and Stöver, D. , 1992, “ Wet Powder Spraying—A Process for the Production of Coatings,” Surf. Coat. Technol., 53(1), pp. 71–74. [CrossRef]
Zhou, W. , Shi, H. , Ran, R. , Cai, R. , Shao, Z. , and Jin, W. , 2008, “ Fabrication of an Anode-Supported Yttria-Stabilized Zirconia Thin Film for Solid-Oxide Fuel Cells Via Wet Powder Spraying,” J. Power Sources, 184(1), pp. 229–237. [CrossRef]
Shi, H. , Zhou, W. , Ran, R. , and Shao, Z. , 2010, “ Comparative Study of Doped Ceria Thin-Film Electrolytes Prepared by Wet Powder Spraying With Powder Synthesized Via Two Techniques,” J. Power Sources, 195(2), pp. 393–401. [CrossRef]
Kao, W.-X. , Lee, M.-C. , Lin, T.-N. , Wang, C.-H. , and Chang, Y.-C. , 2010, “ Fabrication and Characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ—Gadolinia-Doped Ceria Cathode for an Anode-Supported Solid-Oxide Fuel Cell,” J. Power Sources, 195(8), pp. 2220–2223. [CrossRef]
Will, J. , Mitterdorfer, A. , Kleinlogel, C. , Perednis, D. , and Gauckler, L. J. , 2000, “ Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells,” Solid State Ionics, 131(1–2), pp. 79–96. [CrossRef]
Song, J.-H. , Park, S.-I. , Lee, J.-H. , and Kim, H.-S. , 2008, “ Fabrication Characteristics of an Anode-Supported Thin-Film Electrolyte Fabricated by the Tape Casting Method for IT-SOFC,” J. Mater. Process. Technol., 198(1–3), pp. 414–418. [CrossRef]
Martínez-Amesti, A. , Larrañaga, A. , Rodríguez-Martínez, L. M. , Nó, M. L. , Pizarro, J. L. , Laresgoiti, A. , and Arriortua, M. I. , 2009, “ Influence of SDC-YSZ Contact at Different Atmospheres in SOFC Operation and Processing Conditions,” J. Electrochem. Soc., 156(7), pp. B856–B861. [CrossRef]
Duana, Z. , Yang, M. , Yan, A. , Hou, Z. , Dong, Y. , Chong, Y. , Cheng, M. , and Yang, W. , 2006, “ Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a Cathode for IT-SOFCs With a GDC Interlayer,” J. Power Sources, 160(1), pp. 57–64. [CrossRef]
Wang, K. , Ran, R. , Zhou, W. , Gu, H. , Shao, Z. , and Ahn, J. , 2008, “ Properties and Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 Composite Cathode,” J. Power Sources, 179(1), pp. 60–68. [CrossRef]
Zhou, W. , Shao, Z. , and Jin, W. , 2006, “ Synthesis of Nanocrystalline Conducting Composite Oxide Based on a Non-Ion Selective Combined Complexing Process for Functional Applications,” J. Alloys Compd., 426(1–2), pp. 368–374. [CrossRef]
Ohrui, H. , Matushima, T. , and Hirai, T. , 1998, “ Performance of a Solid Oxide Fuel Cell Fabricated by Co-Firing,” J. Power Sources, 71(1–2), pp. 185–189. [CrossRef]
Wang, K. , Zeng, P. , and Ahn, J. , 2012, “ Performance Investigation of YSZ-SDC Solid Oxide Fuel Cells,” ASME Paper No. FuelCell2012-91429.

Figures

Grahic Jump Location
Fig. 1

Fuel cell performance without the SDC buffer layer operating with hydrogen fuel at a flow rate of 100 mL min−1 and air as oxidant at different operating temperatures

Grahic Jump Location
Fig. 2

Fuel cell performance at different sintering temperatures of the SDC buffer layer (a) 1200 °C, (b) 1250 °C, (c) 1300 °C, (d) 1350 °C, (e) 1400 °C, and (f) 1450 °C operating with hydrogen fuel at a flow rate of 100 mL min−1 and air as oxidant at different operating temperatures

Grahic Jump Location
Fig. 3

Fuel cell performance comparison at an operating temperature of 750 °C with the SDC buffer layer sintered between 1250 °C and 1450 °C operating with hydrogen fuel at a flow rate of 100 mL min−1 and air as oxidant

Grahic Jump Location
Fig. 4

Ohmic resistance, polarization resistance, and total resistance for different sintering temperatures of the SDC buffer layer from 1250 °C to 1450 °C at an operating temperature of 750 °C with hydrogen fuel at a flow rate of 100 mL min−1 and air as oxidant

Grahic Jump Location
Fig. 5

EDX analysis of the YSZ–SDC interface, in the middle of the SDC buffer layer and at the SDC–BSCF interface of the fuel cell sintered at 1400 °C

Grahic Jump Location
Fig. 6

Cross-sectional morphologies of the fuel cell with SDC buffer layer sintered at (a) 1250 °C, (b) 1300 °C, (c) 1350 °C, (d) 1400 °C, (e) 1450 °C, and (f) 1500 °C

Grahic Jump Location
Fig. 7

Cross-sectional morphologies of the fuel cell without a cathode layer showing changes in the YSZ–SDC interface at a SDC sintering temperature of (a) 1200 °C, (b) 1300 °C, (c) 1400 °C, and (d) 1500 °C

Grahic Jump Location
Fig. 8

SEM morphologies of the SDC buffer layer surface at different sintering temperatures of (a) 1400 °C (b) 1450 °C, and (c) 1500 °C

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In