Minh, N. Q., 1993, “Ceramic Fuel Cells,” J. Am. Ceram. Soc., 76 (3), pp. 563–588.
[CrossRef]Chan, N.-H., Sharma, R. K., and Smyth, D. M., 1981, “Nonstoichiomery in SrTiO3 ,” J. Electrochem. Soc., 128 (8), pp. 1762–1769.
[CrossRef]Tsukuda, H., Okuma, S., and Tomida, K., 2009, “Influence of La Substitute on Sintering Behavior, Electronic Properties and Thermal Expansion of Sr1 − 1.5x Lax TiO3 ,” J. Jpn. Soc. Powder Metallurgy, 56 (2), pp. 65–70.
[CrossRef]Tomida, K., Yamashita, A., Tukuda, H., Kabata, T., Ikeda, K., Hisatome, N., and Yamazaki, Y., 2009, “ Optimization of Segmented-in-Series Tubular SOFCs With an (La, Sr)CoO3 System Cathode and the Generation Characteristics Under Pressurization,” Electrochemistry, 77 (12), pp. 1018–1027.
Hui, S., and Petric, A., 2002, “Evaluation of Yttrium-Doped SrTiO3 as an Anode for Solid Oxide Fuel Cells,” J. Eur. Ceram. Soc., 22 , pp. 1673–1681.
[CrossRef]Sun.C., and Stimming, U., 2007, “Recent Anode Advances in Solid Oxide Fuel Cells,” J. Power Sources, 171 , pp. 247–260.
[CrossRef]Kurokawa, H., Yang, L., Jacobson, C. P., De Jonghe, L. C., and Visco., S. J., 2007, “Y-Doped SrTiO3 Based Sulfur Tolerant Anode for Solid Oxide Fuel Cells,” J. Power Sources, 164 , pp. 510–518.
[CrossRef]Fu, Q., Tietz, F., Sebold, D., Tao, S., and Irvine, J. T. S., 2007, “An Efficient Ceramic-Based Anode for Solid Oxide Fuel Cells,” J. Power Sources, 171 , pp. 663–669.
[CrossRef]Gong, M., Liu, X., Trembly, J., and Johnson, C., 2007, “Sulfur-Tolerant Anode Materials for Solid Oxide Fuel Cell Application,” J. Power Sources, 168 , pp. 289–298.
[CrossRef]Gao, F., Zhao, H., Li, X., Cheng, Y., Zhou, X., and Cui, F., 2008, “Preparation and Electrical Properties of Yttrium-Doped Strontium Titanate With B-site Deficiency,” J. Power Sources, 185 , pp. 26–31.
[CrossRef]Sun, X., Wang, S., Wang, Z., Ye, X., Wen, T., and Huang, F., 2008, “Anode Performance of LST-xCeO2 for Solid Oxide Fuel Cells,” J. Power Soruces, 183 , pp. 114–117.
[CrossRef]Fu, Q. X., Mi, S. B., Wessel, E., and Tietz, F., 2008, “Influence of Sintering Conditions on Microstructure and Electrical Conductivity Yttrium-Substituted SrTiO3 ,” J. Eur. Ceram. Soc., 28 , pp. 881–820.
Sun, X., Wang, S., Wang, Z., Qian, J. X., Wen, T., and Huang, F., 2009, “Evaluation of Sr0.88 Y0.08 TiO3 -CeO2 as Composite Anode for Solid Oxide Fuel Cells Running on CH4 Fuel”, J. Power Sources, 187 , pp. 85–89.
[CrossRef]Escudero, M. J., Irvine, J. T. S., and Daza, L., 2009, “Development of Anode Material Based on La-Substitute SrTiO3 Perovskites Doped With Manganese and/or Gallium for SOFC,” J. Power Sources, 192 , pp. 43–50.
[CrossRef]Ma, Q., Rietz, F., Sebold, D., and Stöver, D., 2010, “Y-Substituted SrTiO3 -YSZ Composites as Anode Materials for Solid Oxide Fuel Cells: Interaction Between SYT and YSZ,” J. Power Sources, 195 , pp. 1920–1925.
[CrossRef]Yoo, K. B., and Choi, G. M., 2009, “Co-Doped La0.2 Sr0.8 TiO3 as a Possible Anode for the LaGaO3 -based Solid Oxide Fuel Cell,” ECS Trans., 25 (2), pp. 2259–2266.
Li, X., Zhao, H., Gao, F., Zhu, Z., Chen, N., and Shen, W., 2008, “Synthesis and Electrical Properties of Co-Doped Y0.08 Sr0.92 TiO3 − δ as a Potential SOFC Anode,” J. Power Sources, 179 , pp. 1588–1592.
Zhao, H., Gao, F., Li, X., Zhang, C., and Zhao, Y., 2009, “Electrical Properties of Yttrium Doped Strontium Titanate With A-site Deficiency as Potential Anode Materials for Solid Oxide Fuel Cells,” J. Power Sources, 180 , pp. 193–197.
Kharton, V. V., Shuangbao, L., Kovalensky, A. V., and Naumovich, E. N., 1997, “Oxygen Permeability of Perovskites in the System SrCoO3 − δ -SrTiO3”, Solid State Ionics, 96 , pp. 141–151.
[CrossRef]Anderson, H. U., 1992, “Review of p-Type Doped Perovskite Materials for SOFC and Other Application,” Solid State Ionics, 52 , pp. 33–41.
[CrossRef]Koc, R., and Anderson, H. U., 1992, “Liquid Phase Sintering of LaCrO3 ,” J. Eur. Ceram. Soc., 9 , pp. 285–292.
[CrossRef]Kleinlogel, C., and Gauckler, L. J., 2000, “Sintering and Properties of Nanosized Ceria Solid Solution,” Solid State Ionics, 135 , pp. 567–573.
[CrossRef]Navas, C. , and Loye, H.-C., 1997, “Conductivity Studies on Oxygen-Deficient Ruddlesden-Popper Phase,” Solid State Ionics, 93 , pp. 171–176.
[CrossRef]Takeuchi, T., Tani, T., and Satoh, T., 1998, “Microcomposite Particles Sr3 Ti2 O7 -SrTiO3 With an Epitaxial Core-Shell Structure,” Solid State Ionics, 108 , pp. 67–71.
[CrossRef]Sugimoto, W., Shirata, M., Takemoto, M., Hayami, S., Sugahara, Y., and Kuroda, K., “Synthesis and Structures of Carrier Doped Titanates With the Ruddlesden-Popper Structure (Sr0.95La0.05)n+1TinO3n+1(
n = 1,2),” Solid State Ionics, 108 , pp. 315–319.
[CrossRef]Roth, R. S., 1957, “Classification of Perovskite and Other ABO3 -Type Compounds,” J. Res. NBS, RP2736, 58 (2), pp. 75–88.
Takeda, Y., Kanno, R., Takada, T., Yamamoto, O., Takano, M., and Bando, Y., 1986, “Phase Relation and Oxygen-Non-Stoichiometry of Perovskite-Like Compound SrCoOx(2.29 <
x < 2.80), Anorg. Allg. Chem., 540/541 , pp. 259–270.
[CrossRef]Vashook, V. V., Zinkevich, M. V., and Zonov, Y. G., 1999, “Phase Relations in Oxygen-Deficient SrCoO2.5 − δ ,” Solid State Ionics, 116 , pp. 129–138.
[CrossRef]Shannon, R. D., and Previtt, C. T., 1969, “Effective Ionic Radii in Oxides and Flourides,” Acta Cryst., B25 , pp. 925–946.
Yasuda, I., and Hishinuma, M., 2000, “Lattice Expansion of Acceptor-Doped Lathanum Chromites Under High-Temperature Reducing Atmospheres,” Electrochemistry, 68 (6), pp. 526–530.
Hayashi, H., Saitou, T., Maruyama, N., Inaba, H., Kawamura, K., and Mori, M., 2005, “Thermal Expansion Coefficient of Yttria Stabilized Zirconia for Various Yttria Content,” Solid State Ionics, 176 , pp. 613–619.
[CrossRef]Wang, Z., Hashimoto, S., and Mori, M., 2009, “Investigation and Optimization of Interface Reactivity Between Ce0.9 Gd0.1 O1.95 and Zr0.89 Sc0.1 Ce0.01 O2 − δ for High Performance Intermediate Temperature-Solid Oxide Fuel Cells,” J. Power Sources, 193 , pp. 49–54.
[CrossRef]Suda, E., Pacaud, B., Montardi, Y., Mori, M., and Takeda, Y., 2004, “Electrical and Thermal Properties of Dense CE1−xRExO2−δ Electrolyte Using Low-Temperature Sinterable Powder (0 ≤ x ≤ 0.2, RE = Y, Sm, Gd),” Trans. Mater. Res. Soc. Jpn., 29 (5), pp. 2317–2320.
Mori, M., Hiei, Y., Sammes, N. M., and Tompsett, G. A., 2000, “Thermal-Expansion Behaviors and Mechanisms for Ca- or Sr-Doped Lanthanum Manganite Perovskites Under Oxidizing Atmosphere,” J. Electrochem. Soc., 147 (4), pp. 1295–1302.
[CrossRef]Tai, L.-W., Nasrallah, M. M., Anderson, H. U., Sparlin, D. M., and Sehlin, S. R., 1995, “Structure and Electrical Properties of La1−xSrxCo1−yFeyO3. Part 1. The System La0.8Sr0.2Co1−yFeyO3,” Solid State Ionics, 76 , pp. 259–271.
[CrossRef]Tai, L.-W., Nasrallah, M. M., Anderson, H. U., Sparlin, D. M., and Sehlin, S. R., 1995, “Structure and Electrical Properties of La1−xSrxCo1−yFeyO3. Part 2. The System La1−xSrxCo0.2Fe0.8O3,” Solid State Ionics, 76 , pp. 273–283.
[CrossRef]Mori, M., Yamamoto, T., Itoh, H., Inaba, H., and Tagawa, H., 1998, “Thermal Expansion of Nickel-Zirconia Anodes in Solid Oxide Fuel Cells During Fabrication and Operation,” J. Electrochem. Soc., 145 (4), pp. 1374–1381.
[CrossRef]Mori, M., Yamamoto, T., Itoh, H., and WatanabeT., 1997, “Compatibility of Alkaline Earth Metal (Mg, Ca, Sr)-Doped Lanthanum Chromites as Separators in Planar-Type High-Temperature Solid Oxide Fuel Cells,” J. Mater. Sci., 32 , pp. 2423–2431.
[CrossRef]Yasuda, I., and Hishinuma, M., 1995, “Electrical Conductivity and Chemical Diffusion Coefficient of Sr-Doped Lanthanum Chromites,” Solid State Ionics, 80 , pp. 141–150.
[CrossRef]Yasuda, I., and Hishinuma, M., 1995, “Electrochemical Properties of Doped Lanthanum Chromites as Interconnectors for Solid Oxide Fuel Cells,” J. Electrochem. Soc., 143 , pp. 1583–1590.
[CrossRef]