0
Research Papers

Synthesis and Characterization of Nafion-ZrOH-CaO Hybrid Membrane for Proton Exchange Membrane Fuel Cell

[+] Author and Article Information
Vahid Mazinani, Milad Rezaei, Mahdiyeh Mallahi, Mohsen Mohammadijoo, Hamid Omidvar

Department of Mining
and Metallurgical Engineering,
Amirkabir University of Technology
(Tehran Polytechnic),
Hafez Ave., P.O. Box 15875–4413,
Tehran, Iran

SeyedHadi Tabaian

Department of Mining
and Metallurgical Engineering,
Amirkabir University of Technology
(Tehran Polytechnic),
Hafez Ave., P.O. Box 15875–4413,
Tehran, Iran
e-mail: tabaian@aut.ac.ir

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY. Manuscript received June 9, 2012; final manuscript received November 22, 2013; published online January 24, 2014. Assoc. Editor: Abel Hernandez-Guerrero.

J. Fuel Cell Sci. Technol 11(3), 031004 (Jan 24, 2014) (6 pages) Paper No: FC-12-1054; doi: 10.1115/1.4026142 History: Received June 09, 2012; Revised November 22, 2013

Nafion-CaO, Nafion-ZrOH, and Nafion-CaO-ZrOH membranes are fabricated in order to improve proton conductivity, thermal stability, and mechanical properties as well as decrease methanol crossover in direct methanol fuel cells. The ion exchange method is utilized to incorporate Ca and Zr into Nafion membranes. Prepared membranes are characterized by using absorption transmission reflectance (ATR) and energy dispersive X-ray spectroscopy (EDS) techniques. Methanol crossover decreases significantly for all fabricated membranes. Nafion-CaO and Nafion-CaO-ZrOH membranes exhibit a 10 and 6 time increase in proton conductivity compared to Nafion (0.08 Scm–1), while the proton conductivity of Nafion-ZrOH decreases. The elastic modulus enhance from 48 MPa for Nafion to 60, 78, and 90 MPa for Nafion-CaO, Nafion-ZrOH, and Nafion-CaO-ZrOH membranes. In addition, the thermal stability of Nafion (360 °C) increases to 407, 457, and 470 °C for fabricated membranes.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dillon, R., Srinivasan, S., Arico, A. S., and Antonucci, V., 2004, “International Activities in DMFC R&D: Status of Technologies and Potential Applications,” J. Power Sources, 127, pp. 112–126. [CrossRef]
Casciola, M., Alberti, G., Sganappa, M., and Narducci, R., 2006, “On the Decay of Nafion Proton Conductivity at High Temperature and Relative Humidity,” J. Power Sources, 162, pp. 141–145. [CrossRef]
Matos, B. R., Santiago, E. I., Fonseca, F. C., Linardia, M., Lacerdab, R. G., Lavayenb, V., Ladeirab, L. O., and Ferlautob, A. S., 2007, “Titanate Nanotubes as Inorganic Fillers of Nafion Membranes for PEM Fuel Cell Operating at High Temperatures,” ECS Trans., 11(1), pp. 143–150. [CrossRef]
Arico, A. S., Baglio, V., Creti, P., Blasi, A. D., Antonucci, V., Brunea, J., Chapotot, A., Bozzi, A., and Schoemans, J., 2003, “Investigation of Grafted ETFE-Based Polymer Membranes as Alternative Electrolyte for Direct Methanol Fuel Cells,” J. Power Sources, 123, pp. 107–115. [CrossRef]
Silva, R. F., Francesco, M. D., and Pozio, A., 2004, “Solution-Cast Nafion® Ionomer Membranes: Preparation and Characterization,” Electrochim. Acta, 49, pp. 3211–3219. [CrossRef]
Satterfield, M. B., and Benziger, J. B., 2009, “Viscoelastic Properties of Nafion at Elevated Temperature and Humidity,” J. Polym. Sci., 47, pp. 11–24. [CrossRef]
Satterfield, M. B., Majsztrik, P., Ota, H., Benziger, J. B., and Bocarsly, A. B., 2006, “Mechanical Properties of Nafion and Titania/Nafion Composite Membranes for Polymer Electrolyte Membrane Fuel Cells,” J. Polym. Sci., 44, pp. 2327–2345. [CrossRef]
Casciola, M., Capitani, D., Donnadio, A., Frittella, V., Pica, M., Sganappa, M., and Varzi, A., 2008, “Nafion–Zirconium Phosphate Nanocomposite Membranes With High Filler Loadings: Conductivity and Mechanical Properties,” Fuel Cells, 8, pp. 217–224. [CrossRef]
Park, Y. S., and Yamazaki, Y., 2005, “Low Methanol Permeable and High Proton-Conducting Nafion/Calcium Phosphate Composite Membrane for DMFC,” Solid State Ionics, 176, pp. 1079–1089. [CrossRef]
Tang, H. L., Pan, M., Yuan, R. Z., Jiang, S. P., 2005, “Modification of Nafion Membrane to Reduce Methanol Crossover Via Self-Assembled Pd Nanoparticles,” Mater. Lett., 59, pp. 3766–3770. [CrossRef]
Adjemian, K. T., Lee, S. J., Srinvasan, S., Benzigerb, J., and Bocarslya, A. B., 2002, “Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80–140 °C,” J. Electrochem. Soc., 149(3), pp. A256–A261. [CrossRef]
Jung, D. H., Lee, C. H., Kim, C. S., and Shin, D. R., 1998, “Performance of a Direct Methanol Polymer Electrolyte Fuel Cell,” J. Power Sources, 71(1-2), pp. 169–173. [CrossRef]
Lu, G. Q., Wang, C. Y., Yen, T. J., and Zhang, X., 2004, “Development and Characterization of a Silicon-Based Micro Direct Methanol Fuel Cell,” Electrochim. Acta, 49, pp. 821–828. [CrossRef]
Mauritz, K. A., and Payne, J. T., 2000, “Perfluorosulfonate Ionomer/Silicate Hybrid Membranes Via Base-Catalyzed In Situ Sol–Gel Processes for Tetraethylorthosilicate,” J. Membr. Sci., 168, pp. 39–51. [CrossRef]
Deng, Q., Moore, R. B., and Mauritz, K. A., 1998, “Nafion®/(SiO2, ORMOSIL, and Dimethylsiloxane) Hybrids Via In Situ Sol-Gel Reactions: Characterization of Fundamental Properties,” J. Appl. Polym. Sci., 68, pp. 747–763. [CrossRef]
Linag, Z. X., Zhao, T. S., and Prabhuram, J., 2006, “Diphenyl Silicate Incorporated Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol Fuel Cells,” J. Membr. Sci., 283, pp. 219–224. [CrossRef]
Grot, W. G., and Rajendran, G., 1999, “Membranes Containing Inorganic and Membrane and Electrode Assemblies and Electrochemical Cells Employing Same,” US Patent No. 5,919,583.
Si, Y., Kunz, H. R., and Fenton, J. M., 2004, “Nafion-Teflon-Zr(HPO4)2 Composite Membranes for High-Temperature PEMFCs,” J. Electrochem. Soc., 151, pp. A623–A631. [CrossRef]
Yang, C., Srinivasan, S., Arisco, A. S., and Creti, P., 2001, Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature,” Solid State Lett., 4, pp. 31–34. [CrossRef]
Silva, V. S., Ruffmann, B., Silva, H., Silva, V. B., Mendes, A., Maderra, L. M., and Nunes, S., 2006, “Zirconium Oxide Hybrid Membranes for Direct Methanol Fuel Cells Evaluation of Transport Properties,” J. Membr. Sci., 284, pp. 137–144. [CrossRef]
Mat, N. C., and Liong, A., 2009, “Chitosan-Poly (Vinyl Alcohol) and Calcium Oxide Composite Membrane for Direct Methanol Fuel Cell Applications,” Eng. Lett., 116, pp. 1017–1029.
Stati, P., Minutoli, M., and Hocevar, S., 2000, “Membranes Based on Phosphotungstic Acid and Polybenzimidazole for Fuel Cell Application,” J. Power Sources, 90, pp. 231–235. [CrossRef]
Stati, P., Arico, A. S., Baglio, V., Lufrano, F., Passalacqua, E., and Antonucci, V., 2001, “Hybrid Nafion–Silica Membranes Doped With Heteropolyacids for Application in Direct Methanol Fuel Cells,” Solid State Ionics, 145, pp. 101–107. [CrossRef]
Montoneri, E., Bottigliengo, S., Casciola, M., Sganappa, M., Marigo, A., and Speranza, G., 2010, “A New Poly Functional Acid Material for Solid State Proton Conductivity in Dry Environment: Nafion Doped With Difluromethandiphosphonic Acid,” Solid State Ionics, 181, pp. 578–585. [CrossRef]
Kreuer, K. D., 2001, “On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells,” J. Membr. Sci., 185, pp. 29–39. [CrossRef]
Sen, U., Celik, S. U., Ata, A., and Bozkurt, A., 2008, “Anhydrous Proton Conducting Membranes for PEM Fuel Cells Based on Nafion/Azole Composites,” J. Hydrogen Energy, 33, pp. 2808–2815. [CrossRef]
Casciola, M., Capitani, D., Commite, A., Donnadio, A., Frittella, V., Pica, M., Sganappa, M., and Varzi, A., 2008, “Nafion-Zirconium Phosphate Nanocomposite Membranes With High Filer Loadings: Conductivity and Mechanical Properties,” Fuel Cells, 8, pp. 217–224. [CrossRef]
Chen, L. C., Yu, T. L., Lin, H. L., and Yeh, S. H., 2008, “Nafion/PTFE and Zirconium Phosphate Modified Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cells,” J. Membr. Sci., 307, pp. 10–20. [CrossRef]
Do, J. S., and Liou, B. C., 2011, “A Mixture Design Approach to Optimizing the Cathodic Compositions of Proton Exchange Membrane Fuel Cell,” J. Power Sources, 196, pp. 1864–1871. [CrossRef]
Kim, J., Kim, B., and Jung, B., 2002, “Proton Conductivities and Methanol Permeabilities of Membranes Made From Partially Sulfonated Polystyrene-Block-Poly(Ethylene-Ran-Butylene)-Block-Polystyrene Copolymer,” J. Membr. Sci., 207, pp. 129–137. [CrossRef]
Tricoli, V., 1998, “Proton and Methanol Transport in Poly(Perfluoro-Sulfonate) Membranes Containing Cs+ and H+ Cations,” J. Electrochem. Soc., 145, pp. 3798–3801. [CrossRef]
Sarkar, D., Mohapatra, D., Ray, S., Bhattacharyya, S., Adak, S., and Mitra, N., 2007, “Nanostructured Al2O3–ZrO2 Composite Synthesized by Sol–Gel Technique: Powder Processing and Microstructure,” J. Mater. Sci., 42, pp. 1847–1855. [CrossRef]
Zhao, Y., Jiang, Z., Xiao, L., Xu, T., Qiao, T. S., and Wu, H., 2011, “Chitosan Membranes Filled With Biomimetric Mineralized Hydroxyapatite for Enhanced Proton Conductivity,” Solid State Ionics, 187, pp. 33–38. [CrossRef]
Choi, P., Jalani, N. H., and Datta, R., 2005, “Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity,” J. Electrochem. Soc., 152, pp. E123–E130. [CrossRef]
Du, C., Zhao, T., and Yang, W., 2007, “Effect of Methanol Crossover on the Cathode Behavior of a DMFC: A Half-Cell Investigation,” Electrochim. Acta, 52, pp. 5266–5271. [CrossRef]
Park, H. B., Shin, H. S., Lee, Y. M., and Rhim, J. W., 2005, “Annealing Effect of Sulfonated Polysulfone Ionomer Membranes on Proton Conductivity and Methanol Transport,” J. Membr. Sci., 247, pp. 103–110. [CrossRef]
Clark, J., and Macquarrie, D., eds., 2002, Handbook of Green Chemistry and Technology, Wiley-Blackwell, London.
Gürsel, S. A., Gubler, L., Gupta, B., and Scherer, G. G., 2008, “Radiation Grafted Membranes,” Fuel Cells I (Advances in Polymer Science Vol. 215), Springer, Berlin, pp. 157–217. [CrossRef]
Mahreni, A., Mohamad, A. B., Kadhum, A. A. H., Daud, W. R. W., and Iyuke, S. E., 2009, “Nafion/Silicon Oxide/Phosphotungstic Acid Nanocomposite Membrane With Enhanced Proton Conductivity,” J. Membr. Sci., 18, pp. 32–40. [CrossRef]
Uversky, V., and Permyakov, E., eds., 2001, Methods in Protein Structure and Stability Analysis, Nova Science Publishers, New York.

Figures

Grahic Jump Location
Fig. 1

A schematic setup for methanol crossover measurement

Grahic Jump Location
Fig. 2

EDS spectrum of the Nafion-ZrOH-CaO membrane

Grahic Jump Location
Fig. 3

ATR diagram of pure Nafion

Grahic Jump Location
Fig. 4

ATR diagrams for pure Nafion, Nafion-ZrOH, Nafion-CaO, and Nafion-ZrOH-CaO membranes

Grahic Jump Location
Fig. 5

The amount of methanol passed through membranes at the various times

Grahic Jump Location
Fig. 6

Nyquist diagrams of the different membranes obtained by two-electrode EIS experiment

Grahic Jump Location
Fig. 7

The stress-strain diagrams of different Nafion membranes

Grahic Jump Location
Fig. 8

The thermogravimetric curves obtained for different Nafion composite membranes

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In