0
Review Article

Effect of Clamping Load on the Performance of Proton Exchange Membrane Fuel Cell Stack and Its Optimization Design: A Review of Modeling and Experimental Research

[+] Author and Article Information
Cheng-wei Wu

e-mail: cwwu@dlut.edu.cn
State Key Laboratory of Structural Analysis for
Industrial Equipment,
Faculty of Vehicle Engineering and Mechanics,
Dalian University of Technology,
Dalian 116024, China

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY. Manuscript received October 26, 2013; final manuscript received November 1, 2013; published online December 10, 2013. Editor: Nigel M. Sammes.

J. Fuel Cell Sci. Technol 11(2), 020801 (Dec 10, 2013) (11 pages) Paper No: FC-13-1102; doi: 10.1115/1.4026070 History: Received October 26, 2013; Revised November 01, 2013

When individual proton exchange membrane fuel cells (PEMFCs) are assembled together to form a stack and provide energy for practical applications, an appropriate clamping load is usually required to render the stack high efficiency, high reliability, and excellent durability. From both modeling and experimental aspects, this article first highlights the effect of clamping load on the electron transfer, mass (water and reactant gases) transfer, and heat transfer in a PEMFC stack and then puts the attentions on the optimization design of clamping load with emphases on the optimal clamping load and the homogenous distribution of clamping load. This summary may deepen our understanding of the assembly of a PEMFC stack and provide referential information for the designer and manufacturer.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Grove, W. R., 1839, “On Voltaic Series and the Combination of Gases by Platinum,” London, Edinburgh Dublin Philos. Mag. J. Sci., 14, pp. 127–130.
“Fuel Cells and Vehicles,” US Environmental Protection Agency, September 20, 2012, http://www.epa.gov/fuelcell/basicinfo.htm
Giddey, S., Ciacchi, F. T., and Badwal, S. P. S., 2004, “Design, Assembly and Operation of Polymer Electrolyte Membrane Fuel Cell Stacks to 1 kW Capacity,” J. Power Sources, 125(2), pp. 155–165. [CrossRef]
“Fuel Cell and Hydrogen Industry: Ten Trends to Watch in 2011 and Beyond,” Navigant Research, http://www.navigantresearch.com/research/the-fuel-cell-and-hydrogen-industries-10-trends-to-watch-in-2013-and-beyond
Barbir, F., 2005, PEM Fuel Cells: Theory and Practice, Elsevier Academic, New York, Chap. 1.
Kulikovsky, A. A., 2011, “A Method for Detection and Location of Current-Free Spots in a Fuel Cell Stack: Numerical Study,” Int. J. Hydrogen Energy, 36(7), pp. 4449–4453. [CrossRef]
Zhou, P., Wu, C. W., and Ma, G. J., 2007, “Influence of Clamping Force on the Performance of PEMFCs,” J. Power Sources, 163(2), pp. 874–881. [CrossRef]
Gottesfeld, S., and Zawodzinski, T. A., 1997, Advances in Electrochemical Science and Engineering, R. C.Alkire, H.Gerischer, D.Kolb, and C.Tobias, eds., Wiley-VCH, New York, pp. 197–301.
Knobbe, M. W., 2000, “Gas and Water Management in a Proton Exchange Membrane Fuel Cell Stack,” M.S. thesis, University of Kansas, Lawrence, KS, Chap. 1.
Berning, T., and Djilali, N., 2003, “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell—A Parametric Study,” J. Power Sources, 124(2), pp. 440–452. [CrossRef]
Yoon, W., and Huang, X., 2010, “A Multiphysics Model of PEM Fuel Cell Incorporating the Cell Compression Effects,” J. Electrochem. Soc., 157(5), pp. B680–B690. [CrossRef]
Spendelow, J., and Marcinkoski, J., 2012, “Fuel Cell System Cost—2012,” U.S. Department of Energy Hydrogen and Fuel Cells Program, Report No. 12020, http://www.hydrogen.energy.gov/pdfs/12020_fuel_cell_system_cost_2012.pdf
Spendelow, J., Papageorgopoulos, D., and Garbak, J., 2011, “Fuel Cell Stack Durability,” U.S. Department of Energy Hydrogen and Fuel Cells Program, Report No. 11003, http://www.hydrogen.energy.gov/pdfs/11003_fuel_cell_stack_durability.pdf
Wee, J. H., 2007, “Applications of Proton Exchange Membrane Fuel Cell Systems,” Renewable Sustainable Energy Rev., 11(8), pp. 1720–1738. [CrossRef]
Uzunoglu, M., Onar, O. C., and Alam, M. S., 2007, “Dynamic Behavior of PEM FCPPs Under Various Load Conditions and Voltage Stability Analysis for Stand-Alone Residential Applications,” J. Power Sources, 168(1), pp. 240–250. [CrossRef]
Helmolt, R. V., and Eberle, U., 2007, “Fuel Cell Vehicles: Status 2007,” J. Power Sources, 165(2), pp. 833–843. [CrossRef]
Manso, A. P., Marzo, F. F., Barranco, J., Garikano, X., and Mujika, M. G., 2012, “Influence of Geometric Parameters of the Flow Fields on the Performance of a PEM Fuel Cell. A Review,” Int. J. Hydrogen Energy, 37(20), pp. 317–337. [CrossRef]
Hermann, A., Chaudhuri, T., and Spagnol, P., 2005, “Bipolar Plates for PEM Fuel Cells: A Review,” Int. J. Hydrogen Energy, 30(12), pp. 1297–1302. [CrossRef]
Li, X., and Sabir, I., 2005, “Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs,” Int. J. Hydrogen Energy, 30(4), pp. 359–371. [CrossRef]
Tawfik, H., Hung, Y., and Mahajan, D., 2007, “Metal Bipolar Plates for PEM Fuel Cell—A Review,” J. Power Sources, 163(2), pp. 755–767. [CrossRef]
Park, S., Lee, J. W., and Popov, B. N., 2012, “A Review of Gas Diffusion Layer in PEM Fuel Cells: Materials and Designs,” Int. J. Hydrogen Energy, 37(7), pp. 5850–5865. [CrossRef]
Cindrella, L., Kannan, A. M., Lin, J. F., Saminathan, K., Ho, Y., Lin, C. W., and Wertz, J., 2009, “Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells—A Review,” J. Power Sources, 194(1), pp. 146–160. [CrossRef]
Larminie, J., and Dicks, A., 2003, Fuel Cell Systems Explained, Wiley, London, Chap. 1.
Wilde, P. M., Mändle, M., Murata, M., and Berg, N., 2004, “Structural and Physical Properties of GDL and GDL/BPP Combinations and Their Influence on PEMFC Performance,” Fuel Cells, 4(3), pp. 180–184. [CrossRef]
Nitta, I., Hottinen, T., Himanen, O., and Mikkola, M., 2007, “Inhomogeneous Compression of PEMFC Gas Diffusion Layer: Part I. Experimental,” J. Power Sources, 171(1), pp. 26–36. [CrossRef]
Lin, J. H., Chen, W. H., Su, Y. J., and Ko, T. H., 2008, “Effect of Gas Diffusion Layer Compression on the Performance in a Proton Exchange Membrane Fuel Cell,” Fuel, 87(12), pp. 2420–2424. [CrossRef]
Netwall, C. J., Gould, B. D., Rodgers, J. A., Nasello, N. J., and Swider-Lyons, K. E., 2013, “Decreasing Contact Resistance in Proton-Exchange Membrane Fuel Cells With Metal Bipolar Plates,” J. Power Sources, 227, pp. 137–144. [CrossRef]
Lee, W. K., Ho, C. H., Van Zee, J. W., and Murthy, M., 1999, “The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell,” J. Power Sources, 84(1), pp. 45–51. [CrossRef]
Escribano, S., Blachot, J. F., Etheve, J., Morin, A., and Mosdale, R., 2006, “Characterization of PEMFCs Gas Diffusion Layers Properties,” J. Power Sources, 156(1), pp. 8–13. [CrossRef]
Chang, W. R., Hwang, J. J., Weng, F. B., and Chan, S. H., 2007, “Effect of Clamping Pressure on the Performance of a PEM Fuel Cell,” J. Power Sources, 166(1), pp. 149–154. [CrossRef]
Hwang, J. J., and Hwang, H. S., 2002, “Parametric Studies of a Double-Cell Stack of PEMFC Using Grafoil Flow-Field Plates,” J. Power Sources, 104(1), pp. 24–32. [CrossRef]
Ismail, M. S., Ingham, D. B., Ma, L., and Pourkashanian, M., 2013, “The Contact Resistance Between Gas Diffusion Layers and Bipolar Plates as They are Assembled in Proton Exchange Membrane Fuel Cells,” Renewable Energy, 52, pp. 40–45. [CrossRef]
Nitta, I., Himanen, O., and Mikkola, M., 2008, “Contact Resistance Between Gas Diffusion Layer and Catalyst Layer of PEM Fuel Cell,” Electrochem. Commun., 10(1), pp. 47–51. [CrossRef]
Barber, M., Sun, T. S., Petrach, E., Wang, X., and Zou, Q., 2008, “Contact Mechanics Approach to Determine Contact Surface Area Between Bipolar Plates and Current Collector in Proton Exchange Membrane Fuel Cells,” J. Power Sources, 185(1), pp. 1252–1256. [CrossRef]
Zhou, P., Wu, C. W., and Ma, G. J., 2006, “Contact Resistance Prediction and Structure Optimization of Bipolar Plates,” J. Power Sources, 159(2), pp. 1115–1122. [CrossRef]
Zhou, P., Lin, P., Wu, C. W., and Li, Z., 2011, “Effect of Nonuniformity of the Contact Pressure Distribution on the Electrical Contact Resistance in Proton Exchange Membrane Fuel Cells,” Int. J. Hydrogen Energy, 36(10), pp. 6039–6044. [CrossRef]
Chia, P. H., Chan, S. H., Weng, F. B., Su, A., Sui, P. C., and Djilali, N., 2010, “On the Effects of Non-Uniform Property Distribution Due to Compression in the Gas Diffusion Layer of a PEMFC,” Int. J. Hydrogen Energy, 35(7), pp. 2936–2948. [CrossRef]
Yim, S. D., Kim, B. J., Sohn, Y. J., Yoon, Y. G., Park, G. G., and Lee, W. Y., 2010, “The Influence of Stack Clamping Pressure on the Performance of PEM Fuel Cell Stack,” Curr. Appl. Phys., 10(2), pp. S59–S61. [CrossRef]
Owejan, J. P., Trabold, T. A., Jacobson, D. L., Arif, M., and Kandlikar, S. G., 2007, “Effects of Flow Field and Diffusion Layer Properties on Water Accumulation in a PEM Fuel Cell,” Int. J. Hydrogen Energy, 32(17), pp. 4489–4502. [CrossRef]
Jiao, K., and Zhou, B., 2007, “Innovative Gas Diffusion Layers and Their Water Removal Characteristics in PEM Fuel Cell Cathode,” J. Power Sources, 169(2), pp. 296–314. [CrossRef]
Gauthier, E., Duan, Q., Hellstern, T., and Benziger, J., 2012, “Water Flow In, Through, and Around the Gas Diffusion Layer,” Fuel Cells, 12(5), pp. 835–847. [CrossRef]
Ihonen, J., Mikkola, M., and Lindbergh, G., 2004, “Flooding of Gas Diffusion Backing in PEFCs Physical and Electrochemical Characterization,” J. Electrochem. Soc., 151(8), pp. A1152–A1161. [CrossRef]
Bazylak, A., Sinton, D., Liu, Z. S., and Djilali, N., 2007, “Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers,” J. Power Sources, 163(2), pp. 784–792. [CrossRef]
Litster, S., and Djilali, N., 2005, “Two-Phase Transport in Porous Gas Diffusion Electrodes,” Transport Phenomena in Fuel Cells, WIT, Southampton, UK, pp. 175–213.
Gostick, J. T., Ioannidis, M. A., Fowler, M. W., and Pritzker, M. D., 2009, “Wettability and Capillary Behavior of Fibrous Gas Diffusion Media for Polymer Electrolyte Membrane Fuel Cells,” J. Power Sources, 194(1), pp. 433–443. [CrossRef]
Tamayol, A., and Bahrami, M., 2011, “Water Permeation Through Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells,” J. Power Sources, 196(15), pp. 6356–6361. [CrossRef]
Huang, K. J., Chen, C. Y., Hwang, S. J., and Lai, W. H., 2012, “Effects of Compression Distribution on PEMFC Stacks Using Reformate as Fuel,” Energy Procedia, 29, pp. 234–243. [CrossRef]
Wang, Y., and Chen, K. S., 2011, “Effect of Spatially-Varying GDL Properties and Land Compression on Water Distribution in PEM Fuel Cells,” J. Electrochem. Soc., 158(11), pp. B1292–B1299. [CrossRef]
Olesen, A. C., Kar, S. K., and Berning, T., 2012, “The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell,” ASME J. Fuel Cell Sci. Technol., 9(3), p. 031010. [CrossRef]
Mathias, M., Roth, J., Fleming, J., and Lehnert, W., 2003, Handbook of Fuel Cells: Fundamentals, Technology, and Applications, W.Vielstich, A.Lamm, and H. A.Gasteiger, eds., Wiley, New York, Chap. 4.
Nazarov, I., and Promislow, K., 2007, “The Impact of Membrane Constraint on PEM Fuel Cell Water Management,” J. Electrochem. Soc., 154(7), pp. B623–B630. [CrossRef]
Kusoglu, A., Kienitz, B. L., and Weber, A. Z., 2011, “Understanding the Effects of Compression and Constraints on Water Uptake of Fuel-Cell Membranes,” J. Electrochem. Soc., 158(12), pp. B1504–B1514. [CrossRef]
Shi, Z. Y., Wang, X., and Guessous, L., 2010, “Effect of Compression on the Water Management of a Proton Exchange Membrane Fuel Cell With Different Gas Diffusion Layers,” ASME J. Fuel Cell Sci. Technol., 7, p. 021012. [CrossRef]
Zhou, P., Wu, C. W., and Ma, G. J., 2007, “Numerical Study on the Compression Effect of Gas Diffusion Layer on PEMFC Performance,” J. Power Sources, 170(1), pp. 93–100. [CrossRef]
Chippar, P. O. K., Kang, K., and Ju, H., 2012, “A Numerical Investigation of the Effects of GDL Compression and Intrusion in Polymer Electrolyte Fuel Cells (PEFCs),” Int. J. Hydrogen Energy, 37(27), pp. 6326–6338. [CrossRef]
Yoneda, M., Takimoto, M., and Koshizuka, S., 2007, “Effects of Microstructure of Gas Diffusion Layer on Two-Phase Flow Transport Properties,” ECS Trans., 11(1), pp. 629–635. [CrossRef]
Tseng, C. J., and Lo, S. K., 2010, “Effects of Microstructure Characteristics of Gas Diffusion Layer and Microporous Layer on the Performance of PEMFC,” Energy Convers. Manage., 51(4), pp. 677–684. [CrossRef]
Parikh, N., Allen, J. S., and Yassar, R. S., 2012, “Microstructure of Gas Diffusion Layers for PEM Fuel Cells,” Fuel Cells, 12(3), pp. 382–390. [CrossRef]
Sui, P. C., and Djilali, N., 2006, “Analysis of Coupled Electron and Mass Transport in the Gas Diffusion Layer of a PEM Fuel Cell,” J. Power Sources, 161(1), pp. 294–300. [CrossRef]
Ge, J. B., Higier, A., and Liu, H. T., 2006, “Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance,” J. Power Sources, 159(2), pp. 922–927. [CrossRef]
Khandelwal, M., and Mench, M. M., 2006, “Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials,” J. Power Sources, 161(2), pp. 1106–1115. [CrossRef]
Nitta, I., Himanen, O., and Mikkola, M., 2008, “Thermal Conductivity and Contact Resistance of Compressed Gas Diffusion Layer of PEM Fuel Cell,” Fuel Cells, 8(2), pp. 111–119. [CrossRef]
Burheim, O., Vi, P. J. S., Pharoah, J. G., and Kjelstrup, S., 2010, “Ex Situ Measurements of Through-Plane Thermal Conductivities in a Polymer Electrolyte Fuel Cell,” J. Power Sources, 195(1), pp. 249–256. [CrossRef]
Sadeghi, E., Djilali, N., and Bahrami, M., 2011, “A Novel Approach to Determine the In-Plane Thermal Conductivity of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells,” J. Power Sources, 196(7), pp. 246–254. [CrossRef]
Sadeghi, E., Djilali, N., Bahrami, M., 2010, “Effective Thermal Conductivity and Thermal Contact Resistance of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells. Part 2: Hysteresis Effect Under Cyclic Compressive Load,” J. Power Sources, 195(24), pp. 8104–8109. [CrossRef]
Sadeghi, E., Bahrami, M., and Djilali, N., 2008, “Analytic Determination of the Effective Thermal Conductivity of PEM Fuel Cell Gas Diffusion Layers,” J. Power Sources, 179(1), pp. 200–208. [CrossRef]
Zamel, N., Litovsky, E., Li, X., and Kleiman, J., 2011, “Measurement of the Through-Plane Thermal Conductivity of Carbon Paper Diffusion Media for the Temperature Range from −50 to +120 °C,” Int. J. Hydrogen Energy, 36(19), pp. 12618–12626. [CrossRef]
Fekrazad, N., and Bergman, T. L., 2007, “The Effect of Compressive Load on Proton Exchange Membrane Fuel Cell Stack Performance and Behavior,” ASME J. Heat Transfer, 129(8), pp. 1004–1013. [CrossRef]
Fekrazad, N., and Bergman, T. L., 2008, “Effect of Nonuniform Stack Compression on Proton Exchange Membrane Fuel Cell Temperature Distributions,” ASME J. Heat Transfer, 130(12), p. 122002. [CrossRef]
Fekrazad, N., and Bergman, T. L., 2008, “Bipolar Plate Thermal Response to PEM Fuel Cell Stack Compressive Load,” ASME J. Heat Transfer, 130, p. 064503. [CrossRef]
Ahmed, D. H., Sung, H. J., and Bae, J., 2008, “Effect of GDL Permeability on Water and Thermal Management in PEMFCs—II. Clamping Force,” Int. J. Hydrogen Energy, 33(14), pp. 3786–3800. [CrossRef]
Ahmed, D. H., Sung, H. J., and Bae, J., 2008, “Effect of GDL Permeability on Water and Thermal Management in PEMFCs—I. Isotropic and Anisotropic Permeability,” Int. J. Hydrogen Energy, 33(14), pp. 3767–3785. [CrossRef]
Sadeghifar, H., Bahrami, M., and Djilali, N., 2013, “A Statistically-Based Thermal Conductivity Model for Fuel Cell Gas Diffusion Layers,” J. Power Sources, 233(1), pp. 369–379. [CrossRef]
Zhou, Y., Lin, G., Shih, A. J., and Hu, S. J., 2009, “Multiphysics Modeling of Assembly Pressure Effects on Proton Exchange Membrane Fuel Cell Performance,” ASME J. Fuel Cell Sci. Technol., 6(4), p. 041005. [CrossRef]
Wen, C. Y., Lin, Y. S., and Lu, C. H., 2009, “Experimental Study of Clamping Effects on the Performances of a Single Proton Exchange Membrane Fuel Cell and a 10-Cell Stack,” J. Power Sources, 192(2), pp. 475–485. [CrossRef]
Martemianov, S., Bograchev, D., Grandidier, J. C., and Kadjo, J. J., 2010, “Thermo-Mechanical Phenomena in PEM Fuel Cells,” Int. J. Energy Res., 34(7), pp. 635–642. [CrossRef]
Tan, J. Z., Chao, Y. J., Lee, W. K., and Van Zee, J. W., 2007 “Relationship Between the Applied Torque and Compression of Gasket in a Fuel Cell Assembly,” J. Pressure Equip. Syst., 5, pp. 1–7.
Liu, D., Lai, X., Ni, J., Peng, L., Lan, S., and Lin, Z., 2007, “Robust Design of Assembly Parameters on Membrane Electrode Assembly Pressure Distribution,” J. Power Sources, 172(2), pp. 760–767. [CrossRef]
Lin, P., Zhou, P., and Wu, C. W., 2009, “A High Efficient Assembly Technique for Large PEMFC Stacks: Part I. Theory,” J. Power Sources, 194(1), pp. 381–390. [CrossRef]
Lin, P., Zhou, P., and Wu, C. W., 2010 “A High Efficient Assembly Technique for Large Proton Exchange Membrane Fuel Cell Stacks: Part II. Applications,” J. Power Sources, 195(5), pp. 1383–1392. [CrossRef]
Hottinen, T., Himanen, O., Karvonen, S., and Nitta, I., 2007, “Inhomogeneous Compression of PEMFC Gas Diffusion Layer: Part II. Modeling the Effect,” J. Power Sources, 171(1), pp. 113–121. [CrossRef]
Bograchev, D., Gueguen, M., Grandidier, J. C., and Martemianov, S., 2008, “Stress and Plastic Deformation of MEA in Fuel Cells: Stresses Generated During Cell Assembly,” J. Power Sources, 180(1), pp. 393–401. [CrossRef]
Lee, S. J., Hsu, C. D., and Huang, C. H., 2005, “Analyses of the Fuel Cell Stack Assembly Pressure,” J. Power Sources, 145(2), pp. 353–361. [CrossRef]
Mikkola, M., Tingelof, T., and Ihonen, J. K., 2009, “Modelling Compression Pressure Distribution in Fuel Cell Stacks,” J. Power Sources, 193(1), pp. 269–275. [CrossRef]
Kim, J. S., Park, J. B., Kim, Y. M., Ahn, S. H., Sunk, H. Y., Kim, H., and Song, T. W., 2008, “Fuel Cell End Plates: A Review,” Int. J. Precis. Eng. Manuf., 9(1), pp. 39–46.
Fu, Y., Hou, M., Yan, X. Q., Hou, J. B., Luo, X. K., and Shao, Z. G., 2007, “Research Progress of Aluminium Alloy Endplates for PEMFCs,” J. Power Sources, 166(2), pp. 435–440. [CrossRef]
Karvonen, S., Hottinen, T., Ihonen, J., and Uusalo, H., 2008, “Modeling of Polymer Electrolyte Membrane Fuel Cell Stack End Plates,” ASME J. Fuel Cell Sci. Technol., 5, p. 041009. [CrossRef]
Montanini, R., Squadrito, G., and Giacoppo, G., 2011, “Measurement of the Clamping Pressure Distribution in Polymer Electrolyte Fuel Cells Using Piezoresistive Sensor Arrays and Digital Image Correlation Techniques,” J. Power Sources, 196(20), pp. 8484–8493. [CrossRef]
Wang, X. T., Song, Y., and Zhang, B., 2008, “Experimental Study on Clamping Pressure Distribution in PEM Fuel Cells,” J. Power Sources, 179(1), pp. 305–309. [CrossRef]
Evertz, J., and Günthart, M., 2003, “Structural Concepts for Light-Weight and Cost-Effective End Plates for Fuel Cell Stacks,” 2nd European PEFC Forum, Lucerne, Switzerland, June 30–July 4, Vol. 2, pp. 469–482.
Asghari, S., Shahsamandi, M. H., and Ashraf Khorasani, M. R., 2010, “Design and Manufacturing of End Plates of a 5 kW PEM Fuel Cell,” Int. J. Hydrogen Energy, 35(17), pp. 9291–9297. [CrossRef]
Lin, P., Zhou, P., and Wu, C. W., 2011, “Multi-Objective Topology Optimization of End Plates of Proton Exchange Membrane Fuel Cell Stacks,” J. Power Sources, 196(3), pp. 1222–1228. [CrossRef]
Kumar, A., Reddy, R. G., Chandra, D., and Bautista, R. G., 2002, Fundamentals of Advanced Materials for Energy Conversion, Vol. 41, TMS, Warrendale, PA, pp. 41–53.
2012, “The Fuel Cell Industry Review 2012,” Platinum Met. Rev., 56(4), pp. 272–273. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of a PEMFC stack assembled with bolts [7]. (Reprinted with permission from Elsevier.)

Grahic Jump Location
Fig. 2

SEM images of the GDL at 200X magnification after it has been compressed for five minutes at (a) 0.18 MPa, (b) 0.36 MPa, (c) 0.68 MPa, and (d) 1.37 MPa [43]. (Reprinted with permission from Elsevier.)

Grahic Jump Location
Fig. 3

The allowable range of the tightening torque applied to a single nut at different working temperatures (hatched areas are those for which a tightening torque is not allowed) [80]. (Reprinted with permission from Elsevier.)

Grahic Jump Location
Fig. 4

Measured pressure distribution contours from the pressure film: 15 kgf mm−2 (left) and 25 kgf mm−2 (right) [83]. (Reprinted with permission from Elsevier.)

Grahic Jump Location
Fig. 5

Schematic of a new design for the end plate and compression system [89]. (Reprinted with permission from Elsevier.)

Grahic Jump Location
Fig. 6

Schematic diagram of the multiobjective optimization design: (a) original end plate; (b) optimization result; (c) manufacturing design according to the optimization result; (d) contact-pressure distribution on the GDL for the original structure; (e) contact-pressure distribution on the GDL for the optimized structure [92]. (Reprinted with permission from Elsevier.)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In