Research Papers

Effect of Humidity on Carbon Monoxide Desorption Kinetics

[+] Author and Article Information
F. Dundar

Institute for Energy and Transport,
Joint Research Centre,
European Commission,
Postbus 2,
Petten 1755 ZG, Netherlands;
Department of Mechanical Engineering,
Meliksah University,
Kayseri 38280, Turkey
e-mail: fdundar@meliksah.edu.tr

A. Pitois, A. Pilenga, G. Tsotridis

Institute for Energy and Transport,
Joint Research Centre,
European Commission,
Postbus 2,
Petten 1755 ZG, Netherlands

1Current address: Department of Mechanical Engineering, Meliksah University, Talas Kayseri.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY. Manuscript received April 15, 2013; final manuscript received February 20, 2014; published online April 17, 2014. Assoc. Editor: Abel Hernandez-Guerrero.

J. Fuel Cell Sci. Technol 11(4), 041008 (Apr 17, 2014) (5 pages) Paper No: FC-13-1035; doi: 10.1115/1.4027185 History: Received April 15, 2013; Revised February 20, 2014

The kinetics of carbon monoxide desorption on a platinum catalyst under humidified conditions were investigated with the steady state isotropic transient kinetic analysis (SSITKA) method. The effect of the humidity level on desorption kinetics was quantified. The carbon monoxide (CO) desorption kinetic constant was calculated regardless of the gas flow rate. The kinetic constant dropped up to 58% with the increasing relative humidity. The negative effect of humidity in terms of CO poisoning for PEM fuel cells was determined.

Copyright © 2014 by ASME
Topics: Desorption , Carbon
Your Session has timed out. Please sign back in to continue.


Yim, S.-D., Sohn, Y.-J., Yoon, Y.-G., Um, S., Kim, C.-S., and Lee, W.-Y., 2008, “Operating Characteristics of 40 W-Class PEMFC Stacks Using Reformed Gas Under Low Humidifying Conditions,” J. Power Sources, 178(2), pp. 711–715. [CrossRef]
Yoo, J. S., Kim, H. T., Joh, H.-I., Kim, H., and Moon, S. H., 2011, “Preparation of a CO-Tolerant PtRuxSny/C Electrocatalyst With an Optimal Ru/Sn Ratio by Selective Sn-Deposition on the Surfaces of Pt and Ru,” Int. J. Hydrogen Energy, 36(3), pp. 1930–1938. [CrossRef]
Geng, B., Cai, J., Liang, S., Liu, S. X., Li, M. F., and Chen, Y.-H., 2010, “Temperature Effects on CO Adsorption/Desorption at Pt Film Electrodes: An Electrochemical In Situ Infrared Spectroscopic Study,” Phys. Chem. Chem. Phys., 12(36), pp. 10888–10895. [CrossRef] [PubMed]
Wasileski, S. A., Weaver, M. J., and Koper, M. T. M., 2001, “Potential-Dependent Chemisorption of Carbon Monoxide on Platinum Electrodes: New Insight From Quantum-Chemical Calculations Combined With Vibrational Spectroscopy,” J. Electroanal. Chem., 500(1–2), pp. 344–355. [CrossRef]
Davies, J. C. and Tsotridis, G., 2008, “Temperature-Dependent Kinetic Study of CO Desorption From Pt PEM Fuel Cell Anodes,” J. Phys. Chem. C, 112(9), pp. 3392–3397. [CrossRef]
Watanabe, M. and Motoo, S., 1975, “Electrocatalysis by Ad-Atoms: Part II. Enhancement of the Oxidation of Methanol on Platinum by Ruthenium Ad-Atoms,” J. Electroanal. Chem. Interfacial Electrochem., 60(3), pp. 267–273. [CrossRef]
Gasteiger, H. A., Marković, N., Ross, P. N., Jr., and Cairns, E. J., 1994, “Electro-Oxidation of Small Organic Molecules on Well-Characterized Pt-Ru Alloys,” Electrochim. Acta, 39(11–12), pp. 1825–1832. [CrossRef]
Gasteiger, H. A., Marković, N., Ross, P. N., Jr., and Cairns, E. J., 1994, “Carbon Monoxide Electrooxidation on Well-Characterized Platinum-Ruthenium Alloys,” J. Phys. Chem., 98(2), pp. 617–625. [CrossRef]
Gasteiger, H. A., Marković, N. M., and Ross, P. N., 1995, “H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixtures at 62 °C,” J. Phys. Chem., 99(45), pp. 16757–16767. [CrossRef]
Gasteiger, H. A., Ross, P. N., Jr., and Cairns, E. J., 1993, “LEIS and AES on Sputtered and Annealed Polycrystalline Pt-Ru Bulk Alloys,” Surf. Sci., 293(1–2), pp. 67–80. [CrossRef]
Gasteiger, H. A., Marković, N. M., and Ross, P. N., 1995, “H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating-Disk Electrode Studies of the Pure Gases Including Temperature Effects,” J. Phys. Chem., 99(20), pp. 8290–8301. [CrossRef]
Davies, J. C., Hayden, B. E., and Pegg, D. J., 2000, “The Modification of Pt(110) by Ruthenium: CO Adsorption and Electro-Oxidation,” Surf. Sci., 467(1–3), pp. 118–130. [CrossRef]
Lu, C., Rice, C., Masel, R. I., Babu, P. K., Waszczuk, P., Kim, H. S., Oldfield, E., and Wieckowski, A., 2002, “UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts,” J. Phys. Chem. B, 106(37), pp. 9581–9589. [CrossRef]
Igarashi, H., Fujino, T., Zhu, Y., Uchida, H., and Watanabe, M., 2001, “CO Tolerance of Pt Alloy Electrocatalysts for Polymer Electrolyte Fuel Cells and the Detoxification Mechanism,” Phys. Chem. Chem. Phys., 3(3), pp. 306–314. [CrossRef]
Mitchell, P. C. H., Wolohan, P., Thompsett, D. and Cooper, S. J., 1997, “Experimental and Theoretical Studies of Fuel Cell Catalysts: Density Functional Theory Calculations of H2 Dissociation and CO Chemisorption on Fuel Cell Metal Dimers,” J. Mol. Catal. A: Chem., 119(1–3), pp. 223–233. [CrossRef]
Watanabe, M., Zhu, Y., Igarashi, H., and Uchida, H., 2000, “Mechanism of CO Tolerance at Pt-Alloy Anode Catalysts for Polymer Electrolyte Fuel Cells,” Electrochemistry, 68(4), pp. 244–251.
Davies, J. C., Bonde, J., Logadóttir, Á., Nørskov, J. K., and Chorkendorff, I., 2005, “The Ligand Effect: CO Desorption From Pt/Ru Catalysts,” Fuel Cells, 5(4), pp. 429–435. [CrossRef]
Davies, J. C., Tsotridis, G., Varlam, M., Valkiers, S., Berglund, M., and Taylor, P., 2010, “SSITKA Investigation of CO and H2 Competitive Adsorption at PEM Fuel Cell Anode Catalysts,” Int. J. Mass Spectrom., 291(3), pp. 152–158. [CrossRef]
Pitois, A., Davies, J. C., Pilenga, A., Pfrang, A., and Tsotridis, G., 2009, “Kinetic Study of CO Desorption From PtRu/C PEM Fuel Cell Anodes: Temperature Dependence and Associated Microstructural Transformations,” J. Catal., 265(2), pp. 199–208. [CrossRef]
Pitois, A., Pilenga, A., Pfrang, A., and Tsotridis, G., 2011, “Temperature-Dependent CO Desorption Kinetics on Supported Gold Nanoparticles: Relevance to Clean Hydrogen Production and Fuel Cell Systems,” Int. J. Hydrogen Energy, 36(7), pp. 4375–4385. [CrossRef]
Pitois, A., Pilenga, A., Pfrang, A., Tsotridis, G., Abrams, B. L., and Chorkendorff, I., 2010, “Temperature Dependence of CO Desorption Kinetics at a Novel Pt-on-Au/C PEM Fuel Cell Anode,” Chem.Eng. J., 162(1), pp. 314–321. [CrossRef]
Pitois, A., Pilenga, A., and Tsotridis, G., 2010, “CO Desorption Kinetics at Concentrations and Temperatures Relevant to PEM Fuel Cells Operating With Reformate Gas and PtRu/C Anodes,” Appl. Catal. A, 374(1–2), pp. 95–102. [CrossRef]
Davies, J. C., Nielsen, R. M., Thomsen, L. B., Chorkendorff, I., Logadóttir, Á., Lodziana, Z., Nørskov, J. K., Li, W. X., Hammer, B., Longwitz, S. R., Schnadt, J., Vestergaard, E. K., Vang, R. T., and Besenbacher, F., 2004, “CO Desorption Rate Dependence on CO Partial Pressure Over Platinum Fuel Cell Catalysts,” Fuel Cells, 4(4), pp. 309–319. [CrossRef]
Jacobs, G. and Davis, B. H., 2010, “Surface Interfaces in Low Temperature Water-Gas Shift: The Metal Oxide Synergy, the Assistance of Co-Adsorbed Water, and Alkali Doping,” Int. J. Hydrogen Energy, 35(8), pp. 3522–3536. [CrossRef]
Kim, S. H., Chung, J. H., Kim, Y. T., Han, J., Yoon, S. P., Nam, S. W., Lim, T.-H., and Lee, H.-I., 2010, “SiO2/Ni and CeO2/Ni Catalysts for Single-Stage Water Gas Shift Reaction,” Int. J. Hydrogen Energy, 35(7), pp. 3136–3140. [CrossRef]
Vignatti, C., Avila, M. S., Apesteguía, C. R., and Garetto, T. F., 2010, “Catalytic and DRIFTS Study of the WGS Reaction on Pt-Based Catalysts,” Int. J. Hydrogen Energy, 35(14), pp. 7302–7312. [CrossRef]
Zhang, J. and Datta, R., 2002, “Sustained Potential Oscillations in Proton Exchange Membrane Fuel Cells With PtRu as Anode Catalyst,” J. Electrochem. Soc., 149(11), pp. A1423–A1431. [CrossRef]
Xu, M. and Iglesia, E., 1998, “Readsorption and Adsorption-Assisted Desorption of CO2 on Basic Solids,” J. Phys. Chem. B, 102(6), pp. 961–966. [CrossRef]


Grahic Jump Location
Fig. 3

Effect of flow rate on desorption

Grahic Jump Location
Fig. 2

Effect of humidity on carbon monoxide desorption (60 sccm)

Grahic Jump Location
Fig. 1

SSITKA experimental setup

Grahic Jump Location
Fig. 4

Total 13CO desorption amounts at different humidity levels and flow rates

Grahic Jump Location
Fig. 5

13CO surface coverage change versus time

Grahic Jump Location
Fig. 6

Apparent kinetic constants at various humidity levels and flow rates

Grahic Jump Location
Fig. 7

Real kinetic constant versus relative humidity




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In