0
Review Article

A Review on Graphical Methods for Modeling a Proton Exchange Membrane Fuel Cell

[+] Author and Article Information
Mathieu Bressel

FCLAB, FR CNRS 3539,
CRIStAL, UMR CNRS 9189,
Avenue Paul Langevin,
Villeneuve d ́Ascq 59655, France
e-mail: Mathieu.Bressel@polytech-lille.fr

Belkacem Ould Bouamama

CRIStAL, UMR CNRS 9189,
Avenue Paul Langevin,
Villeneuve d ́Ascq 59655, France
e-mail: Belkacem.Ouldbouamama@polytech-lille.fr

Daniel Hissel

FEMTO-ST, UMR CNRS 6174,
FCLAB, FR CNRS 3539,
Rue Thierry Mieg,
Belfort 90000, France
e-mail: Daniel.Hissel@univ-fcomte.fr

Mickael Hilairet

FEMTO-ST, UMR CNRS 6174,
FCLAB, FR CNRS 3539,
Rue Thierry Mieg,
Belfort 90000, France
e-mail: Mickael.Hilairet@univ-fcomte.fr

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY. Manuscript received September 17, 2014; final manuscript received November 30, 2015; published online January 20, 2016. Assoc. Editor: Rak-Hyun Song.

J. Fuel Cell Sci. Technol 12(6), 060801 (Jan 20, 2016) (19 pages) Paper No: FC-14-1108; doi: 10.1115/1.4032336 History: Received September 17, 2014; Revised November 30, 2015

Fuel cell systems represent a promising alternative energy converter. In the past years, researches have been conducted for their modeling, control, and diagnosis. The model should accurately reproduce the behavior without being too complex. Due to the highly multiphysical interactions and coupling within the fuel cell, using a graphical representation for developing this model seems well suited. This paper presents a review of recent literature on graphical representation of proton exchange membrane fuel cell (PEMFC). Three main graphical representations are discussed: bond graph (BG), EMR, and equivalent electrical circuit. Their fields of application will be shown as well.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Barbir, F. , 2012, PEM Fuel Cells Theory and Practice, Academic Press, Cambridge, MA.
Jouin, M. , Gouriveau, R. , Hissel, D. , Péra, M. C. , and Zerhouni, N. , 2013, “ Prognostics and Health Management of PEMFC-State of the Art and Remaining Challenges,” Int. J. Hydrogen Energy, 38(35), pp. 15307–15317. [CrossRef]
Biyikoglu, A. , 2005, “ Review of Proton Exchange Membrane Fuel Cell Models,” Int. J. Hydrogen Energy, 30(11), pp. 1181–1212. [CrossRef]
Springer, T. , Zawodzinski, T. , and Gottesfeld, S. , 1991, “ Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc., 138(8), pp. 2334–2342. [CrossRef]
Amphlett, J. C. , Baumert, R. M. , Mann, R. F. , Peppley, B. A. , and Roberge, P. R. , 1995, “ Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell I. Mechanistic Model Development,” J. Electrochem. Soc., 142(1), pp. 1–8. [CrossRef]
Costamagna, P. , 2001, “ Transport Phenomena in Polymeric Membrane Fuel Cells,” Chem. Eng. Sci., 56(2), pp. 323–332. [CrossRef]
Lee, J. , Lalk, T. , and Appleby, A. , 1998, “ Modeling Electrochemical Performance in Large Scale Proton Exchange Membrane Fuel Cell Stacks,” J. Power Sources, 70(2), pp. 258–268. [CrossRef]
Hontanon, E. , Escudero, M. , Bautista, C. , Garcia-Ybarra, P. , and Daza, L. , 2000, “ Optimisation of Flow-Field in Polymer Electrolyte Membrane Fuel Cells Using Computational Fluid Dynamics Techniques,” J. Power Sources, 86(1–2), pp. 363–368. [CrossRef]
Barre, P. J. , Bouscayrol, A. , Delarue, P. , Dumetz, E. , Giraud, F. , Hautier, J. P. , Kestelyn, X. , Lemaire-Semail, B. , and Semail, E. , 2006, “ Inversion-Based Control of Electromechanical Systems Using Causal Graphical Descriptions,” 32nd Annual Conference on IEEE Industrial Electronics (IECON’06), Paris, Nov. 6–10, pp. 5276–5281.
Djeziri, M. A. , Merzouki, R. , Bouamama, B. O. , and Dauphin-Tanguy, G. , 2007, “ Robust Fault Diagnosis by Using Bond Graph Approach,” IEEE/ASME Trans. Mechatron., 12(6), pp. 599–611. [CrossRef]
Boulon, L. , Hissel, D. , Bouscayrol, A. , and Péra, M. C. , 2008, “ Multi Physics Modelling and Representation of Power and Energy Sources for Hybrid Electric Vehicles,” IEEE Vehicle Power and Propulsion Conference (VPPC '08), Harbin, China, Sept. 3–5.
Chartrand, G. , 1985, Introductory Graph Theory, Dover, Mineola, NY.
Tsuge, Y. , Shiozaki, J. , Matsuyama, H. , and O'Shima, E. , 1995, “ Fault Diagnosis Algorithms Based on Signed Directed Graphs and Its Modifications,” Indian Chem. Eng. Symp. Ser., 92, pp. 1–6.
Mosterman, P. , and Biswas, G. , 1999, “ Diagnosis of Continuous Valued Systems in Transient Operating Regions,” IEEE Trans. Syst. Man Cybern. A, 29(6), pp. 554–565. [CrossRef]
Geitner, G. , 2006, “ Power Flow Diagrams Using a Bond Graph Library Under Simulink,” 32nd Annual Conference on IEEE Industrial Electronics (IECON’06), Paris, Nov. 6–10, pp. 5282-5288.
Samantaray, K. , Medjaher, K. , Boumama, B. O. , Staroswiecki, M. , and Dauphin-Tanguy, G. , 2005, “ Diagnostic Bond Graph for Online Fault Detection and Isolation,” Simul. Model. Pract. Theory, 14(3), pp. 237–262. [CrossRef]
Ould-Bouamama, B. , and Dauphin-Tanguy, G. , 2006, “ Modelisation par bond graph. application aux systemes energetiques,” Tech. Ing., TIB216DUO, p. BE8281.
Karnopp, D. , and Rosenberg, R. , 1991, Systems Dynamics: A Unified Approach, Wiley, Hoboken, NJ.
Chatti, N. , Bouamama, B. O. , Gehin, A. , and Merzouki, R. , 2014, “ Signed Bond Graph for Multiple Faults Diagnosis,” Int. Sci. J. Eng. Appl. Artif. Intell., 36, pp. 134–147. [CrossRef]
Ould-Bouamama, B. , Chatti, N. , and Gehin, A. G. , 2014, “ SBG for Health Monitoring of Fuel Cell System,” ICREGA’14—Renewable Energy: Generation and Application, Springer, New York, pp. 73–85.
Hautier, J. P. , and Faucher, J. , 1996, “ Le graphe informationnel causal,” Bull. Union Physiciens, 90, pp. 167–189.
Lhomme, W. , 2007, “ Gestion d’énergie de véhicule hybrides basée sur la représentation énergétique macroscopique,” Ph.D. thesis, University of Lille, Lille, France.
Hissel, D. , Turpin, C. , Boulon, L. , Bouscayrol, A. , Péra, M.-C. , and Rael, S. , 2008, “ A Review on Existing Modeling Methodologies for PEM Fuel Cell Systems,” Fundamentals and Development of Fuel Cells Conference (FDFC’08), Nancy, France, Dec. 10–12.
Bouscayrol, A. , Guillaud, X. , Hautier, J. P. , and Delarue, P. , 2000, “ Macromodelisation pour les conversions electromecaniques: application a la commande des machines electriques,” Rev. Int. Genie Electr., 3, pp. 257–282.
Bouscayrol, A. , Delarue, P. , and Guillaud, X. , 2005, “ Power Strategies for Maximum Control Structure of a Wind Energy Conversion System With Synchronous Machine,” Renewable Energy, 30(15), pp. 2273–2288. [CrossRef]
Boulon, L. , Hissel, D. , Bouscayrol, A. , Péra, M.-C. , and Delarue, P. , 2008, “ Maximal and Practical Control Structure of a PEM Fuel Cell System Based on Energetic Macroscopic Representation,” Fundamentals and Development of Fuel Cells Conference (FDFC’08), Nancy, France, Dec. 10–12, p. 11.
Hernandez, A. , Hissel, D. , and Outbib, R. , 2010, “ Modeling and Fault Diagnosis of a Polymer Electrolyte Fuel Cell Using Electrical Equivalent Analysis,” IEEE Trans. Energy Convers., 25(1), pp. 148–160. [CrossRef]
Noiying, P. , 2013, “ Modélisation locale d'une cellule de pile à combustible pour l’étude de systèmes électriques,” Ph.D. thesis, University of Lorraine, Lorraine, France.
Larminie, J. , and Dicks, A. , 2003, Fuel Cell Systems Explained, 2nd ed., Wiley, Hoboken, NJ.
Hissel, D. , Péra, M. C. , Bouscayrol, A. , and Chrenko, D. , 2008, “ Représentation énergétique macroscopique d'une pile à combustible,” Rev. Int. Genie Electr., 11, pp. 4–5.
Peraza, C. , Diaz, J. G. , Arteaga-Bravo, F. J. , Villanueva, C. , and Gonzales-Longatt, F. , 2008, “ Modeling and Simulation of PEM Fuel Cell With Bond Graph and 20Sim,” American Control Conference (ACC), Seattle, WA, June 11–13, pp. 5104–5108.
Rabih, S. , Turpin, C. , and Astier, S. , 2008, “ Bond Graph Model of a PEM Fuel Cell Stack,” International Conference on Renewable Energies and Power Quality, (ICREPQ'08), Santander, Spain, Mar. 12–14, Paper No. 291.
Saisset, R. , Fontes, G. , Turpin, C. , and Astier, S. , 2006, “ Bond Graph Model of a PEM Fuel Cell,” J. Power Sources, 156(1), pp. 100–107. [CrossRef]
Hung, Y. H. , Lin, P. H. , Wu, C. H. , and Hong, C. W. , 2008, “ Real-Time Dynamic Modeling of Hydrogen PEMFCS,” J. Franklin Inst., 345(2), pp. 182–203. [CrossRef]
McCain, B. A. , and Stefanopoulou, A. G. , 2006, “ Order Reduction for a Control-Oriented Model of the Water Dynamics in Fuel Cells,” 4th International ASME Conference on Fuel Cell Science, Engineering and Technology, (FUELCELL2006), Irvine, CA, June 19–21, pp. 151–159, ASME Paper No. FUELCELL2006-97075.
Chatti, N. , Ould-Bouamama, B. , Gehin, A.-L. , and Merzouki, R. , 2013, “ Merging Bond Graph and Signed Directed Graph to Improve FDI Procedure,” European Control Conference, (ECC), Zurich, Switzerland, July 17–19, pp. 1457–1472.
Schott, P. , and Baurens, P. , 2006, “ Cell Operation Characterization Using Simulation,” J. Power Sources, 156(1), pp. 85–91. [CrossRef]
Schott, P. , Poirot, J.-P. , and Baurens, P. , 2001, “ Modélisation et simulation de la source d'energie à pile à combustible du véhicule hydrogen,” Ann. Chim. Sci. Mater., 26(4), pp. 27–42. [CrossRef]
Gerard, M. , Poirot-Crouvezier, J.-P. , Hissel, D. , and Pera, M.-C. , 2010, “ Oxygen Starvation Analysis During Air Feeding Faults in PEMFC,” J. Hydrogen Energy, 35(22), pp. 12295–12307. [CrossRef]
Benchouia, N. E. , Elias, H. A. , Khochemane, L. , and Mahmah, B. , 2014, “ Bond Graph Modeling Approach Development for Fuel Cell PEMFC Systems,” Int. J. Hydrogen Energy, 39(27), pp. 15224–15231. [CrossRef]
Bressel, M. , Hilairet, M. , Hissel, D. , and Ould-Bouamama, B. , 2015, “ Dynamical Modeling of Proton Exchange Membrane Fuel Cell and Parameters Identification,” 6th International Conference on Fundamentals and Development of Fuel Cells (FDFC), Toulouse, France, Feb. 3–5.
Mzoughi, D. , Allagui, H. , Khili, N. , and Mami, A. , 2015, “ Bond Graph Modeling and Control of a Single PEM Cell,” 6th International Renewable Energy Congress (IREC), Sousse, Tunisia, Mar. 24–26.
Francois, B. , Hissel, D. , and Iqbal, M. , 2005, “ Dynamical Modelling of a Fuel Cell and Wind Turbine DC-Linked Power System,” 8th International Conference on Modeling and Simulation of Electric Machines, Converters and Systems (ELECTRIMACS 2005), Hammamet, Tunisia, Apr. 17–20.
Chrenko, D. , Péra, M. C. , and Hissel, D. , 2007, “ Fuel Cell System Modeling and Control With Energetic Macroscopic Representation,” IEEE International Symposium on Industrial Electronics (ISIE 2007), Vigo, Spain, June 4–7, pp. 169–174.
Boulon, L. , Pera, M.-C. , Delarue, P. , Bouscayrol, A. , and Hissel, D. , 2009, “ Causal Fuel Cell System Model Suitable for Transportation Simulation Applications,” ASME J. Fuel Cell Sci. Technol., 7(1), p. 011010. [CrossRef]
Solano-Martinez, J. , Hissel, D. , Pera, M. C. , and Amiet, M. , 2011, “ Practical Control Structure and Energy Management of a Testbed Hybrid Electric Vehicle,” IEEE Trans. Veh. Technol., 60(9), pp. 4139–4152. [CrossRef]
Baert, J. , Pouget, J. , Hissel, D. , and Péra, M. C. , 2011, “ Energetic Macroscopic Representation of a Hybrid Railway Powertrain,” IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, Sept. 6–9.
Ettihir, K. , Boulon, L. , Agbossou, K. , Kelouwani, S. , and Hammoudi, M. , 2012, “ Design of an Energy Management Strategy for PEM Fuel Cell Vehicles,” IEEE International Symposium on Industrial Electronics (ISIE), Hangzhou, China, May 28–31, pp. 1714–1719.
Gauchia, L. , Bouscayrol, A. , Sanz, J. , Trigui, R. , and Barrade, P. , 2011, “ Fuel Cell, Battery and Supercapacitor Hybrid System for Electric Vehicle: Modeling and Control Via Energetic Macroscopic Representation,” IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, Sept. 6–9.
Boscaino, V. , Miceli, R. , and Capponi, G. , 2013, “ A Circuit Model of a 5kW Fuel Cell,” International Conference on Clean Electrical Power, (ICCEP), Alghero, Italy, June 11–13, pp. 447–452.
Wingelaar, P. J. H. , Duarte, J. L. , and Hendrix, M. A. M. , 2005, “ Dynamic Characteristics of PEM Fuel Cells,” IEEE 36th Power Electronics Specialists Conference, (PESC '05), Recife, Brazil, June 16, pp. 1635–1641..
Famouri, P. , and Gemmen, R. S. , 2003, “ Electrochemical Circuit Model of a PEM Fuel Cell,” IEEE Power Engineering Society General Meeting, Toronto, ON, Canada, July 13–17.
Fontes, G. , Turpin, C. , and Astier, S. , 2010, “ A Large-Signal and Dynamic Circuit Model of a H2/O2 PEM Fuel Cell: Description, Parameter Identification and Exploitation,” IEEE Trans. Ind. Electron., 57(6), pp. 1874–1881. [CrossRef]
Wang, C. , Nehrir, M. H. , and Shaw, S. R. , 2005, “ Dynamic Models and Model Validation for PEM Fuel Cell Using Electrical Circuits,” IEEE Trans. Energy Convers., 20(2), pp. 442–451. [CrossRef]
Becherif, M. , Hissel, D. , Gaagat, S. , and Wack, M. , 2011, “ Electrical Equivalent Model of a Proton Exchange Membrane Fuel Cell With Experimental Validation,” Renewable Energy, 36(10), pp. 2582–2588. [CrossRef]
Noiying, P. , Hinaje, M. , Rael, S. , and Davat, B. , 2011, “ Electrical Modeling of PEMFC Based on an ID Analogic Description of Mass Transport,” IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, Sept. 6–9.
Beer, C. D. , Barendse, P. , Pillay, P. , Bullecks, B. , and Rengaswamy, R. , 2013, “ Electrical Circuit Analysis of CO Poisoning in High Temperature PEM Fuel Cell for Rapid Fault Diagnostics,” IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, Sept. 15–19, pp. 4623–4630.

Figures

Grahic Jump Location
Fig. 1

BG representation (a) and causality (b)

Grahic Jump Location
Fig. 2

Static and dynamic processors and their associated control [23]

Grahic Jump Location
Fig. 3

A source of effort (battery) in EMR

Grahic Jump Location
Fig. 4

Principle of operation of a PEM

Grahic Jump Location
Fig. 5

BG of a PEMFC stack [31]

Grahic Jump Location
Fig. 6

BG of the hydraulic part of a PEMFC [32]

Grahic Jump Location
Fig. 9

BG of PEMFC with a discrete GDL [35]

Grahic Jump Location
Fig. 10

BG of PEMFC stack [36]

Grahic Jump Location
Fig. 11

BG model of the hydraulic phenomenon in an electrode [37]

Grahic Jump Location
Fig. 12

BG model of a PEMFC stack [41]

Grahic Jump Location
Fig. 13

BG model of a single cell [42]

Grahic Jump Location
Fig. 14

Dynamic model of a PEMFC in COG formalism [43]

Grahic Jump Location
Fig. 15

EMR of a PEMFC and its associated air supply [44]

Grahic Jump Location
Fig. 17

EMR of a PEMFC and its auxiliaries [45]

Grahic Jump Location
Fig. 18

EMR of a hybrid electric vehicle [46]

Grahic Jump Location
Fig. 19

EEC of a PEMFC and its EMR equivalent [49]

Grahic Jump Location
Fig. 21

Large signal EEC of a PEMFC [51]

Grahic Jump Location
Fig. 22

EEC of a PEMFC: (a) fuel and (b) air humidifiers circuit [52]

Grahic Jump Location
Fig. 23

Large signal EEC model of a PEMFC [53]

Grahic Jump Location
Fig. 24

pspice scheme of a PEMFC [54]

Grahic Jump Location
Fig. 25

EEC of the pneumatics and fluidics phenomenon in a PEMFC [55]

Grahic Jump Location
Fig. 27

EEC of a PEMFC for CO poisoning diagnosis purpose [57]

Grahic Jump Location
Fig. 28

EEC of a PEMFC for fault diagnosis purpose [27]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In