0
Research Papers

Synthesis and Characterization of Polyion Complex Membranes Made of Aminated Polyetherimide and Sulfonated Polyethersulfone for Fuel Cell Applications

[+] Author and Article Information
N. Harsha, S. Kalyani

Membrane Separations Laboratory,
Chemical Engineering Division,
CSIR-Indian Institute of Chemical Technology,
Hyderabad 500007, India

V. V. Basava Rao

University College of Technology,
Osmania University,
Hyderabad 500007, India

S. Sridhar

Membrane Separations Laboratory,
Chemical Engineering Division,
CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
e-mail: sridhar11in@yahoo.com

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY. Manuscript received July 6, 2014; final manuscript received September 27, 2015; published online December 4, 2015. Assoc. Editor: Shripad T. Revankar.

J. Fuel Cell Sci. Technol 12(6), 061004 (Dec 04, 2015) (10 pages) Paper No: FC-14-1082; doi: 10.1115/1.4031959 History: Received July 06, 2014; Revised September 27, 2015

Acid–base blends of sulfonated polyethersulfone (SPES) with pristine and aminated polyetherimide (APEI) are synthesized. Three blends polyethersulfone (PES)/polyetherimide (PEI), SPES/PEI, and SPES/APEI are prepared and characterized to evaluate their structural, morphological, mechanical, and other properties. Ion exchange capacity (IEC) of SPES/APEI and SPES/PEI blend membranes was determined to be 3.0 and 2.7 meq g−1, which is a substantial improvement over the 1.0 meq g−1 exhibited by unmodified PES/PEI blend. The proton conductivity of 0.093 S cm−1 displayed by SPES/APEI blend is found to be comparable to that of commercial Nafion membrane (0.056 S cm−1) and far superior to conductivities of 0.091 and 0.082 S cm−1 shown by SPES/PEI and PES/PEI blends, respectively. Further, water sorption observed in case of SPES/APEI and SPES/PEI blends was in the range 17–18% over a soaking time period of 12 hrs, which is ideal for proton conduction accompanied by low-membrane swelling. The methanol permeabilities of SPES/APEI and SPES/PEI blends are found to be 2.5 × 10−7 and 3.47 × 10−7 cm2 s−1, respectively. Compared to unmodified PES/PEI blend which revealed a methanol sorption of 12.3%, the modified blends SPES/PEI (9.6%) and SPES/APEI (7.5%) exhibited much lower methanol uptake over a sorption time of 12 hrs, indicating their capacity for low fuel bypass. The results demonstrate the promising potential of polymer blends made by combining a sulfonated polymer with an aminated polymer, such as SPES/APEI for fuel cell (FC) applications.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zicheng, Z. , Yongzhu, F. , and Arumugam, M. , 2012, “ Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells,” Polymers, 4(4), pp. 1627–1644. [CrossRef]
Pierozynski, B. , 2008, “ Fuel Cells–The Future of Electricity Generation for Portable Applications,” Environ. Biotechnol., 4(2), pp. 60–64.
Jung, H. W. , 2007, “ Applications of Proton Exchange Membrane Fuel Cell Systems,” Renewable Sustainable Energy Rev., 11(8), pp. 1720–1738. [CrossRef]
Adolfo, L. , and Angelo, B. , 2012, “ Sulfonated PEEK-Based Polymers in PEMFC and DMFC Applications: A Review,” Int. J. Hydrogen Energy, 37(20), pp. 15241–15255. [CrossRef]
Mao, L. L. , Ananta, K. M. , Nam, H. K. , and Joong, H. L. , 2012, “ Poly(2,5-Benzimidazole)–Silica Nanocomposite Membranes for High Temperature Proton Exchange Membrane Fuel Cell,” J. Membr. Sci., 411, pp. 91–98.
Chao, C. L. , Chuan, B. C. , and Yen, Z. W. , 2013, “ Preparation and Properties of Cross-Linked Sulfonated Poly(Imide-Siloxane) for Polymer Electrolyte Fuel Cell Application,” J. Power Sources, 223, pp. 277–283. [CrossRef]
Kerres, J. , Zhang, W. , Jorissen, L. , and Gogel, V. , 2002, “ Application of Different Types of Polyaryl-Blend-Membranes in DMFC,” J. New Mater. Electrochem. Syst., 5(2), pp. 97–107.
Vladimir, N. , Jonathan, M. , Haijiang, W. , and Jiujun, Z. , 2007, “ A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells,” J. Power Sources, 169(2), pp. 221–238. [CrossRef]
Zhao, C. , Wang, Z. , Bi, D. , Lin, H. , Shao, K. , Fu, T. , Zhong, S. , and Na, H. , 2007, “ Blend Membranes Based on Disulfonated Poly(Aryl Ether Ether Ketone)s (SPEEK) and Poly(Amide Imide) (PAI) for Direct Methanol Fuel Cell Usages,” Polymer, 48(11), pp. 3090–3097. [CrossRef]
Mabrouk, W. , Ogier, L. , Vidal, S. , Sollogoub, C. , Matoussi, F. , and Fauvarque, J. F. , 2014, “ Ion Exchange Membranes Based Upon Crosslinked Sulfonated Polyethersulfone for Electrochemical Applications,” J. Membr. Sci., 452, pp. 263–270. [CrossRef]
Kim, D. H. , and Kim, S. C. , 2008, “ Transport Properties of Polymer Blend Membranes of Sulfonated and Nonsulfonated Polysulfones for Direct Methanol Fuel Cell Application,” Macromol. Res., 16(5), pp. 457–466. [CrossRef]
Lee, M. , Khan, S. B. , Akhtar, K. , Han, H. , and Seo, J. , 2013, “ Fuel Cell: Synthesis and Properties of Polyimide for PEMFC at High Temperature,” Int. J. Electrochem. Sci., 8(1), pp. 4225–4233.
Guhathakurta, S. , and Min, K. , 2009, “ Influence of Crystal Morphology of 1H-1,2,4-Triazole on Anhydrous State Proton Conductivity of Sulfonated Bisphenol a Polyetherimide Based Polyelectrolytes,” Polymer, 50(4), pp. 1034–1045. [CrossRef]
Jennifer, P. , Elodie, R. , Deborah, J. J. , and Jacques, R. , 2008, “ Solution Sulfonation of a Novel Polybenzimidazole: A Proton Electrolyte for Fuel Cell Application,” J. Membr. Sci., 314(1–2), pp. 247–256.
Kingshuk, D. , Suparna, D. , Piyush, K. , and Patit, P. K. , 2014, “ Polymer Electrolyte Membrane With High Selectivity Ratio for Direct Methanol Fuel Cells: A Preliminary Study Based on Blends of Partially Sulfonated Polymers Polyaniline and PVdF-co-HFP,” Appl. Energy, 118, pp. 183–191. [CrossRef]
Huiping, B. , Jiali, W. , Shouwen, C. , Zhaoxia, H. , Zhilin, G. , Lianjun, W. , and Kenichi, O. , 2010, “ Preparation and Properties of Cross-Linked Sulfonated Poly(Arylene Ether Sulfone)/Sulfonated Polyimide Blend Membranes for Fuel Cell Application,” J. Membr. Sci., 350(1–2), pp. 109–116.
Araby, R. E. , Attia, N. K. , Eldiwani, G. , Sobhi, S. , and Mostafa, T. , 2012, “ Preparation of Sulfonated Monomer for Pem Fuel Cell and Solvent Optimization for Recrystallization,” World Appl. Sci. J., 16(8), pp. 1082–1086.
Sheng, L. C. , Bocarslyb, A. B. , and Benziger, J. , 2005, “ Nafion-Layered Sulfonated Polysulfone Fuel Cell Membranes,” J. Power Sources, 152(1), pp. 27–33.
Jedeok, K. , Anna, D. , MunSuk, J. , and Maria, L. D. V. , 2013, “ Crosslinked SPES-SPPSU Membranes for High Temperature PEMFCs,” Int. J. Hydrogen Energy, 38(3), pp. 1517–1523. [CrossRef]
Xiao, L. , Chuankun, J. , Jianguo, L. , and Chuanwei, Y. , 2012, “ Preparation and Characterization of Sulfonated Poly(Ether Sulfone)/Sulfonated Poly(Ether Ether Ketone) Blend Membrane for Vanadium Redox Flow Battery,” J. Membr. Sci., 415–416, pp. 306–312.
Krishnan, N. N. , Lee, H. J. , Kim, H. J. , Kim, J. Y. , Hwang, I. , Jang, J. H. , Cho, E. A. , Kim, S. K. , Henkensmeier, D. , Hong, S. A. , and Lim, T. H. , 2010, “ Sulfonated Poly(Ether Sulfone)/Sulfonated Polybenzimidazole Blend Membrane for Fuel Cell Applications,” Eur. Polym. J., 46(7), pp. 1633–1641. [CrossRef]
Smitha, B. , Sridhar, S. , and Khan, A. A. , 2006, “ Chitosan–Poly(Vinyl Pyrrolidone) Blends as Membranes for Direct Methanol Fuel Cell Applications,” J. Power Sources, 159(2), pp. 846–854. [CrossRef]
Graciela, C. A. , Patrick, N. , Esteban, A. F. , Federico, H. I. , Mkhulu, K. M. , and Horacio, R. C. , 2010, “ Characterization of an Anionic-Exchange Membranes for Direct Methanol Alkaline Fuel Cells,” Int. J. Hydrogen Energy, 35(11), pp. 5849–5854. [CrossRef]
Ramya, K. , Vishnupriya, B. , and Dhathathreyan, K. S. , 2010, “ Methanol Permeability Studies on Sulphonated Polyphenylene Oxide Membrane for Direct Methanol Fuel Cell,” J. New Mater. Electrochem. Syst., 4(2), pp. 115–120.
Haufe, S. , and Stimming, U. , 2001, “ Proton Conducting Membranes Based on Electrolyte Filled Microporous Matrices,” J. Membr. Sci., 185(1), pp. 95–103. [CrossRef]
Feng, M. , Qu, R. , Wei, Z. , Wang, L. , Sun, P. , and Wang, Z. , 2015, “ Characterization of the Thermolysis Products of Nafion Membrane: A Potential Source of Perfluorinated Compounds in the Environment,” Sci. Rep., 5, p. 9859. [CrossRef] [PubMed]
Jang, W. , Sundar, S. , Choi, S. , Shul, Y. G. , and Han, H. , 2006, “ Acid–Base Polyimide Blends for the Application as Electrolyte Membranes for Fuel Cells,” J. Membr. Sci., 280(1–2), pp. 321–329. [CrossRef]
Smitha, B. , Sridhar, S. , and Khan, A. A. , 2004, “ Synthesis and Characterization of Sulphonated PEEK Membranes for Fuel Cell Application,” J. Polym. Mater., 21, pp. 99–106.
Smitha, B. , Sridhar, S. , and Khan, A. A. , 2003, “ Synthesis and Characterization of Proton Conducting Polymer Membranes for Fuel Cells,” J. Membr. Sci., 225(1–2), pp. 63–76. [CrossRef]
Madaeni, S. S. , Amirinejad, S. , and Amirinejad, M. , 2011, “ Phosphotungstic Acid Doped Poly(Vinyl Alcohol)/Poly(Ether Sulfone) Blend Composite Membranes for Direct Methanol Fuel Cells,” J. Membr. Sci., 380(1–2), pp. 132–137. [CrossRef]
Ismail, A. F. , Othman, N. H. , and Mustafa, A. , 2009, “ Sulfonated Polyether Ether Ketone Composite Membrane Using Tungstosilicic Acid Supported on Silica–Aluminium Oxide for Direct Methanol Fuel Cell (DMFC),” J. Membr. Sci., 329(1–2), pp. 18–29. [CrossRef]
Diaz, L. A. , Abuin, G. C. , and Corti, H. R. , 2012, “ Methanol Sorption and Permeability in Nafion and Acid-Doped PBI and ABPBI Membranes,” J. Membr. Sci., 411–412, pp. 35–44. [CrossRef]
Huang, R. Y. M. , 1991, “ A Review of: ‘Pervaporation Membrane Separation Processes',” Sep. Purif. Rev., 20(1), pp. 109–111. [CrossRef]
Sadrabadi, M. M. H. , Dashtimoghadam, E. , Ghaffarian, S. R. , Sadrabadi, M. H. H. , and Moaddel, M. H. H. , 2010, “ Novel High-Performance Nanocomposite Proton Exchange Membranes Based on Poly (Ether Sulfone),” Renewable Energy, 35(1), pp. 226–231. [CrossRef]
Chen, L. , Sun, L. , Zeng, R. , Xiao, S. , and Chen, Y. , 2012, “ Cross-Linked Zwitterionic Polyelectrolytes Based on Sulfonated Poly(Ether Sulfone) With High Proton Conductivity for Direct Methanol Fuel Cells,” J. Power Sources, 212, pp. 13–21. [CrossRef]
Wen, S. , Gong, C. , Tsen, W. C. , Shu, Y. C. , and Tsai, F. C. , 2009, “ Sulfonated Poly(Ether Sulfone) (SPES)/Boron Phosphate (BPO4) Composite Membranes for High-Temperature Proton-Exchange Membrane Fuel Cells,” Int. J. Hydrogen Energy, 34(21), pp. 8982–8991. [CrossRef]
Seo, D. W. , Lim, Y. D. , Lee, S. H. , Jeong, Y. G. , and Hang, T. W. , 2010, “ Preparation and Characterization of Sulfonated Amine-Poly (Ether Sulfone) for Proton Exchange Membrane Fuel Cell,” Int. J. Hydrogen Energy, 35(23), pp. 13088–13095. [CrossRef]
Chang, C. M. , Li, H. Y. , Lai, J. Y. , and Liu, Y. L. , 2013, “ Nanocomposite Membranes of Nafion and Fe3O4-Anchored and Nafion-Functionalized Multiwalled Carbon Nanotubes Exhibiting High Proton Conductivity and Low Methanol Permeability for Direct Methanol Fuel Cells,” RSC Adv., 3(31), pp. 12895–12904. [CrossRef]
Yan, X. , Wang, Y. , He, G. , Hu, Z. , Wu, X. , and Du, L. , 2013, “ Hydroxide Exchange Composite Membrane Based on Soluble Quaternized Polyetherimide for Potential Application in Fuel Cells,” Int. J. Hydrogen Energy, 38(19), pp. 7964–7972. [CrossRef]
Wang, J. , Junbin, L. , Yang, L. , Zhang, S. , Huang, X. , and Ji, J. , 2012, “ Highly Compatible Acid–Base Blend Membranes Based on Sulfonated Poly(Ether Ether Ketone) and Poly(Ether Ether Ketone-Alt-Benzimidazole) for Fuel Cells Application,” J. Membr. Sci., 415–416, pp. 644–653. [CrossRef]
Kim, D. J. , Lee, H. J. , and Nam, S. Y. , 2014, “ Sulfonated Poly(Arylene Ether Sulfone) Membranes Blended With Hydrophobic Polymers for Direct Methanol Fuel Cell Applications,” Int. J. Hydrogen Energy, 39(30), pp. 17524–17532. [CrossRef]
Li, W. , Manthiram, A. , and Guiver, M. D. , “ Acid–Base Blend Membranes Consisting of Sulfonated Poly (Ether Ether Ketone) and 5-Amino-Benzotriazole Tethered Polysulfone for DMFC,” J. Membr. Sci., 362(1–2), pp. 289–297.

Figures

Grahic Jump Location
Fig. 1

Schematic representation of MEA of FC

Grahic Jump Location
Fig. 2

Laboratory membrane casting machine

Grahic Jump Location
Fig. 3

Schematic of laboratory FC experimental setup

Grahic Jump Location
Fig. 4

Methanol permeability cell

Grahic Jump Location
Fig. 5

Schematic view of conductivity cell

Grahic Jump Location
Scheme 1

Ionically crosslinked SPES/PEI blend membrane

Grahic Jump Location
Scheme 2

Ionically crosslinked SPES/APEI blend membrane

Grahic Jump Location
Fig. 6

FTIR spectra of (a) PES/PEI, (b) SPES/PEI, and (c) SPES/APEI membrane

Grahic Jump Location
Fig. 7

X-ray diffractograms of (a) PES/PEI, (b) SPES/PEI, and (c) SPES/APEI blend membrane

Grahic Jump Location
Fig. 8

TGA curves for (a) PES/PEI and (b) SPES/PEI blend membrane

Grahic Jump Location
Fig. 9

Surface morphology of (a) PES/PEI, (b) SPES/PEI, and (c) SPES/APEI blend membrane

Grahic Jump Location
Fig. 10

Methanol permeability and methanol concentration with time at 30 °C for (a) PES/PEI, (b) SPES/PEI, and (c) SPES/APEI blend membrane

Grahic Jump Location
Fig. 11

Impedance of real and imaginary axis of (a) PES/PEI and (b) SPES/PEI blend membrane

Grahic Jump Location
Fig. 12

Frequency and impedance curve for (a) PES/PEI and (b) SPES/PEI blend membrane

Grahic Jump Location
Fig. 13

(a) Cell voltage and (b) power density curves of blend membranes at 30 °C

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In