DOE, 2007, Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan,
U.S. Department of Energy,
Washington, DC, pp. 3.4-1–3.4-42.
Mathias,
M. F.
,
Makharia,
R.
,
Gasteiger,
H. A.
,
Conley,
J. J.
,
Fuller,
T. J.
,
Gittleman,
C. J.
,
Kocha,
S. S.
,
Miller,
D. P.
,
Mittelsteadt,
C. K.
,
Tao,
X.
,
Yan,
S. G.
, and
Yu,
P. T.
, 2005, “
Two Fuel Cell Cars in Every Garage?,” Electrochem. Soc. Interface,
14(3), pp. 24–35.
de Bruijn,
F. A.
,
Dam,
V. A. T.
, and
Janssen,
G. J. M.
, 2008, “
Review: Durability and Degradation Issues of PEM Fuel Cell Components,” Fuel Cells,
8(1), pp. 3–22.
[CrossRef]
Dillard,
D.
,
Li,
Y.
,
Grohs,
J.
,
Case,
S.
,
Ellis,
M.
,
Lai,
Y.-H.
,
Budinski,
M.
, and
Gittleman,
C.
, 2009, “
On the Use of Pressure-Loaded Blister Tests to Characterize the Strength and Durability of Proton Exchange Membranes,” ASME J. Fuel Cell Sci. Technol.,
6(3), p. 031014.
[CrossRef]
Mauritz,
K. A.
, and
Moore,
R. B.
, 2004, “
State of Understanding of Nafion,” Chem. Rev.,
104(10), pp. 4535–4586.
[CrossRef] [PubMed]
Jiang,
R.
,
Fuller,
T.
,
Brawn,
S.
, and
Gittleman,
C.
, 2013, “
Perfluorocyclobutane and Poly(Vinylidene Fluoride) Blend Membranes for Fuel Cells,” Electrochim. Acta,
110, pp. 306–315.
[CrossRef]
Arruda,
E. M.
, and
Boyce,
M. C.
, 1993, “
Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials,” J. Mech. Phys. Solids,
41(2), pp. 389–412.
[CrossRef]
Riku,
I.
, and
Mimura,
K.
, 2010, “
Computational Characterization on Mechanical Behavior of Polymer Electrolyte Membrane Based on Nonaffine Molecular Chain Network Model,” Int. J. Mech. Sci.,
52(2), pp. 287–294.
[CrossRef]
Bergstrom,
J. S.
, and
Boyce,
M. C.
, 1998, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers,” J. Mech. Phys. Solids,
46(5), pp. 931–954.
[CrossRef]
Yoon,
W.
, and
Huang,
X.
, 2011, “
A Nonlinear Viscoelastic/Viscoplastic Constitutive Model for Ionomer Membranes in Polymer Electrolyte Membrane Fuel Cells,” J. Power Sources,
196(8), pp. 3933–3941.
[CrossRef]
Silberstein,
M. N.
, and
Boyce,
M. C.
, 2010, “
Constitutive Modeling of the Rate, Temperature, and Hydration Dependent Deformation Response of Nafion to Monotonic and Cyclic Loading,” J. Power Sources,
195(17), pp. 5692–5706.
[CrossRef]
Lai,
Y.-H.
,
Mittelsteadt,
C. K.
,
Gittleman,
C. S.
, and
Dillard,
D. A.
, 2009, “
Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling,” ASME J. Fuel Cell Sci. Technol.,
6(2), p. 021002.
[CrossRef]
Patankar,
K. A.
,
Dillard,
D. A.
,
Case,
S. W.
,
Ellis,
M. W.
,
Lai,
Y.-H.
,
Budinski,
M. K.
, and
Gittleman,
C. S.
, 2008, “
Hygrothermal Characterization of the Viscoelastic Properties of Gore-Select 57 Proton Exchange Membrane,” Mech. Time-Depend. Mater.,
12(3), pp. 221–236.
[CrossRef]
Solasi,
R.
,
Zou,
Y.
,
Huang,
X.
, and
Reifsnider,
K.
, 2008, “
A Time and Hydration Dependent Viscoplastic Model for Polyelectrolyte Membranes in Fuel Cells,” Mech. Time-Depend. Mater.,
12(1), pp. 15–30.
[CrossRef]
Kusoglu,
A.
,
Karlsson,
A. M.
,
Santare,
M. H.
,
Cleghorn,
S.
, and
Johnson,
W. B.
, 2007, “
Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses,” J. Power Sources,
170(2), pp. 345–358.
[CrossRef]
Kusoglu,
A.
,
Tang,
Y.
,
Santare,
M. H.
,
Karlsson,
A. M.
,
Cleghorn,
S.
, and
Johnson,
W. B.
, 2009, “
Stress–Strain Behavior of Perfluorosulfonic Acid Membranes at Various Temperatures and Humidities: Experiments and Phenomenological Modeling,” ASME J. Fuel Cell Sci. Technol.,
6(1), p. 011012.
[CrossRef]
G’sell,
C.
, 1979, “
Determination of the Plastic Behaviour of Solid Polymers at Constant True Strain Rate,” J. Mater. Sci.,
14(3), pp. 583–591.
May,
N. H.
, 2011, “
A Morphological Study of PFCB-Ionomer/Poly(Vinylidene Fluoride) Copolymer Blends for Fuel Cell Applications,” Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
Finlay,
K. A.
, 2012, “
Characterization of Sulfonated Perfluorocyclobutane/Poly(Vinylidene Difluoride) (PFCB/PVDF) Blends for Use as Proton Exchange Membranes,” Ph.D. thesis, Virginia Polytechnic Institutive and State University, Blacksburg, VA.
May,
J. A.
, 2014, “
Development of an Experimentally Validated Non-Linear Viscoelastic Viscoplastic Model for a Novel Fuel Cell Membrane Material,” Ph.D. dissertation, Mechanical Engineering, Virginia Tech, Blacksburg, VA.
Schapery,
R. A.
, 1969, “
On the Characterization of Nonlinear Viscoelastic Materials,” Polym. Eng. Sci.,
9(4), pp. 295–310.
[CrossRef]
Brinson,
H. F.
, and
Brinson,
L. C.
, 2008, Polymer Engineering Science and Viscoelasticity: An Introduction,
Springer,
New York.
Zapas,
L. J.
, and
Crissman,
J. M.
, 1984, “
Creep and Recovery Behaviour of Ultra-High Molecular Weight Polyethylene in the Region of Small Uniaxial Deformations,” Polymer,
25(1), pp. 57–62.
[CrossRef]
Patankar,
K.
, 2009, “
Linear and Nonlinear Viscoelastic Characterization of Proton Exchange Membranes and Stress Modeling for Fuel Cell Applications,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
Tobolsky,
A.
, and
Eyring,
H.
, 1943, “
Mechanical Properties of Polymeric Materials,” J. Chem. Phys.,
11(3), pp. 125–134.
[CrossRef]
Haj-Ali,
R. M.
, and
Muliana,
A. H.
, 2004, “
Numerical Finite Element Formulation of the Schapery Non-Linear Viscoelastic Material Model,” Int. J. Numer. Methods Eng.,
59(1), pp. 25–45.
[CrossRef]
Tschoegl,
N. W.
,
Knauss,
W. G.
, and
Emri,
I.
, 2002, “
Poisson’s Ratio in Linear Viscoelasticity—A Critical Review,” Mech. Time-Depend. Mater.,
6(1), pp. 3–51.
[CrossRef]
Argon,
A.
, 2013, The Physics of Deformation and Fracture of Polymers,
Cambridge University Press,
Cambridge, UK.
Lai,
J.
, and
Bakker,
A.
, 1995, “
An Integral Constitutive Equation for Nonlinear Plasto-Viscoelastic Behavior of High-Density Polyethylene,” Polym. Eng. Sci.,
35(17), pp. 1339–1347.
[CrossRef]