0
Special Issue Research Papers

Carbonate Dynamics and Opportunities With Low Temperature, Anion Exchange Membrane-Based Electrochemical Carbon Dioxide Separators

[+] Author and Article Information
William A. Rigdon, Travis J. Omasta, Connor Lewis

Department of Chemical and
Biomolecular Engineering,
University of Connecticut,
Storrs, CT 06269;
Center for Clean Energy Engineering,
University of Connecticut,
Storrs, CT 06269

Michael A. Hickner

Department of Materials
Science and Engineering,
Pennsylvania State University,
State College, PA 16802

John R. Varcoe

Department of Chemistry,
University of Surrey,
Guildford GU2 7XH, UK

Julie N. Renner

Proton OnSite,
Wallingford, CT 60492

Kathy E. Ayers

Proton OnSite,
Wallingford, CT 06492

William E. Mustain

Department of Chemical and
Biomolecular Engineering,
University of Connecticut,
Storrs, CT 06269;
Center for Clean Energy Engineering,
University of Connecticut,
Storrs, CT 06269
e-mail: mustain@engr.uconn.edu

1Corresponding author.

Manuscript received February 10, 2016; final manuscript received March 28, 2016; published online May 2, 2017. Assoc. Editor: Dirk Henkensmeier.

J. Electrochem. En. Conv. Stor. 14(2), 020701 (May 02, 2017) (8 pages) Paper No: JEECS-16-1019; doi: 10.1115/1.4033411 History: Received February 10, 2016; Revised March 28, 2016

Fossil fuel power plants are responsible for a significant portion of anthropogenic atmospheric carbon dioxide (CO2) and due to concerns over global climate change, finding solutions that significantly reduce emissions at their source has become a vital concern. When oxygen (O2) is reduced along with CO2 at the cathode of an anion exchange membrane (AEM) electrochemical cell, carbonate and bicarbonate are formed which are transported through electrolyte by migration from the cathode to the anode where they are oxidized back to CO2 and O2. This behavior makes AEM-based devices scientifically interesting CO2 separation devices or “electrochemical CO2 pumps.” Electrochemical CO2 separation is a promising alternative to the state-of-the-art solvent-based methods because the cells operate at low temperatures and scale with surface area, not volume, suggesting that the industrial electrochemical systems could be more compact than amine sorption technologies. In this work, we investigate the impact of the CO2 separator cell potential on the CO2 flux, carbonate transport mechanism, and process costs. The applied electrical current and CO2 flux showed a strong correlation that was both stable and reversible. The dominant anion transport pathway, carbonate versus bicarbonate, undergoes a shift from carbonate to mixed carbonate/bicarbonate with increased potential. A preliminary techno-economic analysis shows that despite the limitations of present cells, there is a clear pathway to meet the U.S. Department of Energy (DOE) 2025 and 2035 targets for power plant retrofit CO2 capture systems through materials and systems-level advances.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Office of Fossil Energy, 2013, “Carbon Capture Technology Program Plan,” U.S. Department of Energy, Washington, DC.
Boot-Handford, M. E. , Abanades, J. C. , Anthony, E. J. , Blunt, M. J. , Brandani, S. , Mac Dowell, N. , Fernández, J. R. , Ferrari, M.-C. , Gross, R. , Hallett, J. P. , Haszeldine, R. S. , Heptonstall, P. , Lyngfelt, A. , Makuch, Z. , Mangano, E. , Porter, R. T. J. , Pourkashanian, M. , Rochelle, G. T. , Shah, N. , Yao, J. G. , and Fennell, P. S. , 2014, “ Carbon Capture and Storage Update,” Energy Environ. Sci., 7(1), p. 130. [CrossRef]
USGS, 2013, “National Assessment of Geologic Carbon Dioxide Storage Resources—Results,” U.S. Geological Survey, Reston, VA.
Dimitriou, I. , García-Gutiérrez, P. , Elder, R. H. , Cuellar-Franca, R. , Azapagic, A. , and Allen, R. W. K. , 2015, “ Carbon Dioxide Utilisation for Production of Transport Fuels: Process and Economic Analysis,” Energy Environ. Sci., 8(6), pp. 1775–1789. [CrossRef]
Spinner, N. S. , Vega, J. A. , and Mustain, W. E. , 2012, “ Recent Progress in the Electrochemical Conversion and Utilization of CO2,” Catal. Sci. Technol., 2(1), p. 19. [CrossRef]
Fisher, K. S. , Street, S. A. , Rochelle, G. , and Figueroa, J. D. , 2005, “ Integrating MEA Regeneration With CO2 Compression to Reduce CO2 Capture Costs,” 4th Annual Conference on Carbon Capture and Sequestration, Alexandria, VA, May 2–5, Paper No. 38.
EPA, 2015, “ Greenhouse Gas Emissions,” U.S. Environmental Protection Agency, Washington, DC, http://www.epa.gov/climatechange/ghgemissions/
EIA, 2013, “ Independent Statistics and Analysis, Electricity,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/countries/analysisbriefs/Nigeria/nigeria.pdf
Yu, C. , Huang, C. , and Tan, C. , 2012, “ A Review of CO2 Capture by Absorption and Adsorption,” Aerosol Air Qual. Res., 12, pp. 745–769.
Zhai, R. , and Yang, Y. , 2010, “ CaO-Based CO2 Capture Technology and Its Application in Power Plants,” Paths to Sustainable Energy, A. Ng , ed., InTech, Rijeka, Croatia, pp. 499–511.
Ho, M. T. , Allinson, G. W. , and Wiley, D. E. , 2008, “ Reducing the Cost of CO2 Capture From Flue Gases Using Pressure Swing Adsorption,” Ind. Eng. Chem. Res., 47(14), pp. 4883–4890. [CrossRef]
Rochelle, G. T. , 2009, “ Amine Scrubbing for CO2 Capture,” Science, 325(5948), pp. 1652–1654. [CrossRef] [PubMed]
EIA, 2015, “ Independent Statistics and Analysis, Electricity, Sales (Consumption), Revenue, Prices and Customers,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/electricity/data.cfm#sales
Booras, G. S. , and Smelser, S. C. , 1991, “ An Engineering and Economic Evaluation of CO2 Removal From Fossil-Fuel-Fired Power Plants,” Energy, 16(11–12), pp. 1295–1305. [CrossRef]
White, C. M. , Strazisar, B. R. , Granite, E. J. , Hoffman, J. S. , and Pennline, H. W. , 2003, “ Separation and Capture of CO2 From Large Stationary Sources and Sequestration in Geological Formations- Coalbeds and Deep Saline Aquifers,” J. Air Waste Manage. Assoc., 53(6), pp. 645–715. [CrossRef]
Granite, E. J. , and O'Brien, T. , 2005, “ Review of Novel Methods for Carbon Dioxide Separation From Flue and Fuel Gases,” Fuel Process. Technol., 86(14), pp. 1423–1434. [CrossRef]
Aaron, D. , and Tsouris, C. , 2005, “ Separation of CO2 From Flue Gas: A Review,” Sep. Sci. Technol., 40(1–3), pp. 321–348. [CrossRef]
Manzolini, G. , Campanari, S. , Chiesa, P. , Giannotti, A. , Bedont, P. , and Parodi, F. , 2012, “ CO2 Separation From Combined Cycles Using Molten Carbonate Fuel Cells,” ASME J. Fuel Cell Sci. Technol., 9(1), p. 011018. [CrossRef]
Amorelli, A. , Wilkinson, M. B. , Bedont, P. , Capobianco, P. , Marcenaro, B. , Parodi, F. , and Torazza, A. , 2002, “ An Experimental Investigation Into the Use of Molten Carbonate Fuel Cells to Capture CO2 From Gas Turbine Exhaust Gases,” Energy, 29(9–10), pp. 1279–1284. [CrossRef]
Winnick, J. , Toghiani, H. , and Quattrone, P. D. , 1982, “ Carbon Dioxide Concentration for Manned Spacecraft Using a Molten Carbonate Electrochemical Cell,” AIChE J., 28(1), pp. 103–111. [CrossRef]
Sugiura, K. , Yanagida, M. , Tanimoto, K. , and Kojima, T. , 2000, “ The Removal Characteristics of Carbon Dioxide in Molten Carbonate for the Thermal Power Plant,” Fifth International Conference on Greenhouse Gas Control Technologies (GHGT-5), Cairns, Australia, Aug. 13–16.
Rheinhardt, J. , and Buttry, D. A. , 2014, “ Energy Efficient Capture and Release of Carbon Dioxide in Tetraalkyl Phosphonium and Tetraalkyl Ammonium Ionic Liquids,” 226th Meeting of the Electrochemical Society (ECS), Cancun, Mexico, Oct. 5–9, Paper No. 1431.
Hasani, M. , and Buttry, D. , 2013, “ Chemical Reactivity of Alkyl Thiolates Used in Electrochemical CO2 Capture in Ionic Liquids,” 226th Meeting of the Electrochemical Society (ECS), San Francisco, CA, Oct. 27–Nov. 1, Paper No. 2601.
Buttry, D. A. , 2014, “ Capture and Release of Carbon Dioxide,” U.S. Patent Application No. 20140271434 A1.
Li, K. , and Li, N. , 1993, “ Removal of Carbon Dioxide From Breathing Gas Mixtures Using an Electrochemical Membrane Cell,” Sep. Sci. Technol., 28(4), pp. 1085–1090. [CrossRef]
Li, K. , Teo, W. , and Hughes, R. , 1994, “ Use of Membranes for Carbon Dioxide Removal in Underwater Life Support Systems,” Underwater Technol., 20(1), pp. 13–17.
Xiao, S. , and Li, K. , 1997, “ On the Use of an Electrochemical Membrane Module for Removal of CO2 From a Breathing Gas Mixture,” Chem. Eng. Res. Des., 75(4), pp. 438–446. [CrossRef]
Pennline, H. W. , Granite, E. J. , Luebke, D. R. , Kitchin, J. R. , Landon, J. , and Weiland, L. M. , 2010, “ Separation of CO2 From Flue Gas Using Electrochemical Cells,” Fuel, 89(6), pp. 1307–1314. [CrossRef]
Landon, J. , and Kitchin, J. R. , 2010, “ Electrochemical Concentration of Carbon Dioxide From an Oxygen/Carbon Dioxide Containing Gas Stream,” J. Electrochem. Soc., 157(8), p. B1149. [CrossRef]
Varcoe, J. R. , Atanassov, P. , Dekel, D. R. , Herring, A. M. , Hickner, M. A. , Kohl, P. A. , Kucernak, A. R. , Mustain, W. E. , Nijmeijer, K. , Scott, K. , Xu, T. , and Zhuang, L. , 2014, “ Anion-Exchange Membranes in Electrochemical Energy Systems,” Energy Environ. Sci., 7(10), pp. 3135–3191. [CrossRef]
Li, N. , Leng, Y. , Hickner, M. A. , and Wang, C. Y. , 2013, “ Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells,” J. Am. Chem. Soc., 135(27), pp. 10124–10133. [CrossRef] [PubMed]
Hickner, M. A. , Herring, A. M. , and Coughlin, E. B. , 2013, “ Anion Exchange Membranes: Current Status and Moving Forward,” J. Polym. Sci. Part B, 51(24), pp. 1727–1735. [CrossRef]
Grew, K. N. , Ren, X. , and Chu, D. , 2011, “ Effects of Temperature and Carbon Dioxide on Anion Exchange Membrane Conductivity,” Electrochem. Solid-State Lett., 14(12), p. B127. [CrossRef]
Kiss, A. M. , Myles, T. D. , Grew, K. N. , Peracchio, A. A. , Nelson, G. J. , and Chiu, W. K. S. , 2013, “ Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes,” J. Electrochem. Soc., 160(9), pp. F994–F999. [CrossRef]
Myles, T. D. , Kiss, A. M. , Grew, K. N. , Peracchio, A. A. , Nelson, G. J. , and Chiu, W. K. S. , 2011, “ Calculation of Water Diffusion Coefficients in an Anion Exchange Membrane Using a Water Permeation Technique,” J. Electrochem. Soc., 158(7), p. B790. [CrossRef]
Vega, J. A. , Shrestha, S. , Ignatowich, M. , and Mustain, W. E. , 2012, “ Carbonate Selective Ca2Ru2O7-y Pyrochlore Enabling Room Temperature Carbonate Fuel Cells,” J. Electrochem. Soc., 159(1), p. B12. [CrossRef]
Vega, J. A. , Spinner, N. , Catanese, M. , and Mustain, W. E. , 2012, “ Carbonate Selective Ca2Ru2O7-y Pyrochlore Enabling Room Temperature Carbonate Fuel Cells,” J. Electrochem. Soc., 159(1), p. B19. [CrossRef]
Hancock, C. A. , Ong, A. L. , and Varcoe, J. R. , 2014, “ Effect of Carbonate Anions on Bi-Doped Ca2Ru2O7 Pyrochlores That are Potential Cathode Catalysts for Low Temperature Carbonate Fuel Cells,” RSC Adv., 4(57), pp. 30035–30045. [CrossRef]
Spinner, N. , and Mustain, W. E. , 2013, “ Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature,” J. Electrochem. Soc., 160(11), pp. F1275–F1281. [CrossRef]
Spinner, N. , and Mustain, W. E. , 2011, “ Effect of Nickel Oxide Synthesis Conditions on Its Physical Properties and Electrocatalytic Oxidation of Methanol,” Electrochim. Acta, 56(16), pp. 5656–5666. [CrossRef]
Gunasekara, I. , Lee, M. , Abbott, D. , and Mukerjee, S. , 2012, “ Mass Transport and Oxygen Reduction Kinetics at an Anion Exchange Membrane Interface: Microelectrode Studies on Effect of Carbonate Exchange,” ECS Electrochem. Lett., 1(2), pp. F16–F19. [CrossRef]
Li, G. , Wang, Y. , Pan, J. , Han, J. , Liu, Q. , Li, X. , Li, P. , Chen, C. , Xiao, L. , Lu, J. , and Zhuang, L. , 2015, “ Carbonation Effects on the Performance of Alkaline Polymer Electrolyte Fuel Cells,” Int. J. Hydrogen Energy, 40(20), pp. 6655–6660. [CrossRef]
Poynton, S. D. , Slade, R. C. T. , Omasta, T. J. , Mustain, W. E. , Escudero-Cid, R. , Ocón, P. , and Varcoe, J. R. , 2014, “ Preparation of Radiation-Grafted Powders for Use as Anion Exchange Ionomers in Alkaline Polymer Electrolyte Fuel Cells,” J. Mater. Chem. A, 2(14), p. 5124. [CrossRef]
Roen, L. M. , Paik, C. H. , and Jarvi, T. D. , 2004, “ Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes,” Electrochem. Solid-State Lett., 7(1), p. A19. [CrossRef]
Shrestha, S. , Liu, Y. , and Mustain, W. E. , 2011, “ Electrocatalytic Activity and Stability of Pt Clusters on State-of-the-Art Supports: A Review,” Catal. Rev., 53(3), pp. 256–336. [CrossRef]
Vega, J. A. , Chartier, C. , and Mustain, W. E. , 2010, “ Effect of Hydroxide and Carbonate Alkaline Media on Anion Exchange Membranes,” J. Power Sources, 195(21), pp. 7176–7180. [CrossRef]
Wu, J. , Yadav, R. M. , Liu, M. , Sharma, P. P. , Tiwary, C. S. , Ma, L. , Zou, X. , Zhou, X. , Yakobson, B. I. , Lou, J. , and Ajayan, P. M. , 2015, “ Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes,” Nano, 9(5), pp. 5364–5371.

Figures

Grahic Jump Location
Fig. 1

Operating principles of an AEM electrolyte electrochemical CO2 separator

Grahic Jump Location
Fig. 2

Comparison of applied current and CO2 evolution at the anode with 0%vol and 50%vol CO2 in the O2-based cathode feed. The N2 flowrate was set at 200 mL/min to purposefully reduce the CO2 concentration to < 1000 ppm.

Grahic Jump Location
Fig. 3

(a) Correlation of the applied cell current (black) and measured CO2 evolution rate at the anode (red). (b) Current and CO2 evolution rate versus cell potential (forward and backward polarizations are shown).

Grahic Jump Location
Fig. 4

The number of electrons (blue) required to separate each CO2 molecule coupled with the separation energy and electrical costs (green) as a function of the cell potential

Grahic Jump Location
Fig. 5

(a) Existing operating requirements for amine and electrochemical separation showing how AEM-based electrochemical cell improvements can yield energy requirements below the thermodynamic limit for chemical sorption; (b) Influence of cell and stack improvements on the cost of electrochemical CO2 separation, showing that AEM-based electrochemical cell improvements can lead to very low costs (ca. ⅓ of chemical amine sorption)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In