0
Research Papers

Performance of a Thermally Coupled Hydrogen Storage and Fuel Cell System Under Different Operation Conditions

[+] Author and Article Information
Gustavo A. Andreasen

Instituto de Investigaciones Fisicoquímicas
Teóricas y Aplicadas (INIFTA),
Facultad de Ciencias Exactas,
Universidad Nacional de La
Plata (UNLP)-Consejo Nacional
de Investigaciones Científicas
y Técnicas (CONICET),
Diagonal 113 y 64, CC. 16, Suc. 4,
La Plata 1900, Argentina
e-mail: gandreasen@inifta.unlp.edu.ar

Silvina G. Ramos

Instituto de Investigaciones Fisicoquímicas
Teóricas y Aplicadas (INIFTA),
Facultad de Ciencias Exactas,
Universidad Nacional de La
Plata (UNLP)-Consejo Nacional
de Investigaciones Científicas
y Técnicas (CONICET),
Diagonal 113 y 64, CC. 16, Suc. 4,
La Plata 1900, Argentina
e-mail: sramos@inifta.unlp.edu.ar

Hernán A. Peretti

Centro Atómico Bariloche-Comisión
Nacional de Energía Atómica (CNEA),
Av. E. Bustillo 9500,
San Carlos de Bariloche,
Río Negro 8400, Argentina
e-mail: hernan.americo.peretti@gmail.com

Walter E. Triaca

Instituto de Investigaciones Fisicoquímicas
Teóricas y Aplicadas (INIFTA),
Facultad de Ciencias Exactas,
Universidad Nacional de La
Plata (UNLP)-Consejo Nacional
de Investigaciones Científicas
y Técnicas (CONICET),
Diagonal 113 y 64, CC. 16, Suc. 4,
La Plata 1900, Argentina
e-mail: walter.triaca@speedy.com.ar

1Corresponding author.

Manuscript received April 1, 2016; final manuscript received October 26, 2016; published online November 16, 2016. Assoc. Editor: Robert J. Braun.

J. Electrochem. En. Conv. Stor. 13(2), 021005 (Nov 16, 2016) (7 pages) Paper No: JEECS-16-1044; doi: 10.1115/1.4035100 History: Received April 01, 2016; Revised October 26, 2016

The performance of a hydrogen storage prototype loaded with AB5H6 hydride, whose equilibrium pressure makes it suitable for both feeding a H2/air proton exchange membrane (PEM) fuel cell and being charged directly from a low-pressure water electrolyzer, interacting thermally with the fuel cell exhaust air, is reported. The nominal 70 L hydrogen storage capacity of the prototype suffices for hydrogen delivery at 0.5 L min−1, which allows a power supply of 50 W for 140 min from the H2/air fuel cell in the absence of thermal interaction. The storage prototype was characterized by monitoring the internal pressure and the temperatures of the external wall and at the center inside the container at different hydrogen discharge conditions. The responses of the integrated system after either immersing the metal hydride container in air or exposing it to the fuel cell hot exhaust air stream under forced convection were compared. The system shows the best performance when the heat generated at the fuel cell is used to increase the metal hydride container temperature, allowing the operation of the fuel cell at 280 W for 16 min at a high hydrogen flow rate of 4 L min−1.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hosseini, S. E. , and Wahid, M. A. , 2016, “ Hydrogen Production From Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development,” Renewable Sustainable Energy Rev., 57(1), pp. 850–866. [CrossRef]
Eudy, L. , Post, M. , and Gikakis, C. , 2015, “ Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015,” Technical Report No. NREL/TP-5400-64974.
Davis, S. C. , Williams, S. E. , Boundy, R. G. , and Moore, S. , 2016, “ 2015 Vehicle Technologies Market Report,” Technical Report No. ORNL/TM-2016/124.
Carmo, M. , Fritz, D. L. , Mergel, J. , and Stolten, D. , 2013, “ A Comprehensive Review on PEM Water Electrolysis,” Int. J. Hydrogen Energy, 38(12), pp. 4901–4934. [CrossRef]
Satyapal, S. , Petrovic, J. , Read, C. , Thomas, G. , and Ordaz, G. , 2007, “ The U.S. Department of Energy's National Hydrogen Storage Project: Progress Towards Meeting Hydrogen-Powered Vehicle Requirements,” Catal. Today, 120(3–4), pp. 246–256. [CrossRef]
Sandrock, G. , and Bowman, R. C., Jr ., 2003, “ Gas-Based Hydride Applications: Recent Progress and Future Needs,” J. Alloys Compd., 356–357(1), pp. 794–799. [CrossRef]
Mohan, G. , Prakash Maiya, M. , and Srinivasa Murthy, S. , 2010, “ The Performance Simulation of Air-Cooled Hydrogen Storage Device With Plate Fins,” Int. J. Low-Carbon Technol., 5(1), pp. 25–34. [CrossRef]
Gadre, S. A. , Ebner, A. D. , and Ritter, J. A. , 2005, “ Two Dimensional Model for the Design of Metal Hydride Hydrogen Storage Systems,” Adsorption, 11(1), pp. 871–876. [CrossRef]
Gadre, S. A. , Ebner, A. D. , Al-Muhtaseb, S. A. , and Ritter, J. A. , 2003, “ Practical Modeling of Metal Hydride Hydrogen Storage Systems,” Ind. Eng. Chem. Res., 42(8), pp. 1713–1722. [CrossRef]
Andreasen, G. , Melnichuk, M. , Ramos, S. , Corso, H. L. , Visintin, A. , Triaca, W. E. , and Peretti, H. A. , 2013, “ Hydrogen Desorption From a Hydride Container Under Different Heat Exchange Conditions,” Int. J. Hydrogen Energy, 38(30), pp. 13352–13359. [CrossRef]
Delhomme, B. , Lanzini, A. , Ortigoza-Villalba, G. A. , Nachev, S. , de Rango, P. , Santarelli, M. , Marty, P. , and Leone, P. , 2013, “ Coupling and Thermal Integration of a Solid Oxide Fuel Cell With a Magnesium Hydride Tank,” Int. J. Hydrogen Energy, 38(11), pp. 4740–4747. [CrossRef]
Khaitan, S. K. , and Raju, M. , 2012, “ Discharge Dynamics of Coupled Fuel Cell and Metal Hydride Hydrogen Storage Bed for Small Wind Hybrid Systems,” Int. J. Hydrogen Energy, 37(3), pp. 2344–2352. [CrossRef]
Mellouli, S. , Askri, F. , Dhaou, H. , Jemni, A. , and Ben Nasrallah, S. , 2010, “ Numerical Simulation of Heat and Mass Transfer in Metal Hydride Hydrogen Storage Tanks for Fuel Cell Vehicles,” Int. J. Hydrogen Energy, 35(4), pp. 1693–1705. [CrossRef]
MacDonald, B. D. , and Rowe, A. M. , 2006, “ A Thermally Coupled Metal Hydride Hydrogen Storage and Fuel Cell System,” J. Power Sources, 161(1), pp. 346–355. [CrossRef]
MacDonald, B. D. , and Rowe, A. M. , 2006, “ Impacts of External Heat Transfer Enhancements on Metal Hydride Storage Tanks,” Int. J. Hydrogen Energy, 31(12), pp. 1721–1731. [CrossRef]
Jiang, Z. , Dougal, R. A. , Liu, S. , Gadre, S. A. , Ebner, A. D. , and Ritter, J. A. , 2005, “ Simulation of a Thermally Coupled Metal-Hydride Hydrogen Storage and Fuel Cell System,” J. Power Sources, 142(1–2), pp. 92–102. [CrossRef]
Førde, T. , Eriksen, J. , Pettersen, A. G. , Vie, P. J. S. , and Ulleberg, Ø. , 2009, “ Thermal Integration of a Metal Hydride Storage Unit and a PEM Fuel Cell Stack,” Int. J. Hydrogen Energy, 34(16), pp. 6730–6739. [CrossRef]
Bossi, C. , Del Corno, A. , Scagliotti, M. , and Valli, C. , 2007, “ Characterisation of a 3 kW PEFC Power System Coupled With a Metal Hydride H2 Storage,” J. Power Sources, 171(1), pp. 122–129. [CrossRef]
Melnichuk, M. , Andreasen, G. , Corso, H. L. , Visintin, A. , and Peretti, H. A. , 2008, “ Study and Characterization of a Metal Hydride Container,” Int. J. Hydrogen Energy, 33(13), pp. 3571–3575. [CrossRef]
Goodell, P. D. , Sandrock, G. D. , and Huston, E. L. , 1980, “ Kinetic and Dynamic Aspects of Rechargeable Metal Hydrides,” J. Less Common Met., 73(1), pp. 135–142. [CrossRef]
Ballard Power Systems, Inc., 2011, “ Product Manual and Integration Guide,” FCgenVR -1020ACS, MAN5100319-0A, Burnaby, BC, Canada.
Rodríguez, D. , 2000, “ Estudio y optimización de aleaciones almacenadoras de hidrógeno,” Ph.D. thesis, Balseiro Intitute-Universidad Nacional de Cuyo, Bariloche, Argentina.

Figures

Grahic Jump Location
Fig. 1

P–C isotherms for MmNi4.7Al0.3 alloy

Grahic Jump Location
Fig. 6

Fuel cell temperature (Tc), external wall temperature (Te), internal temperature (Ti), and hydrogen pressure (P) in the hydride container as a function of time for JH2  = 0.5 L min−1: (a) WTI condition and (b) TI condition

Grahic Jump Location
Fig. 4

Fuel cell stack assembly

Grahic Jump Location
Fig. 3

Scheme of the metal hydride bed. Te = container external wall temperature. Ti = hydride bed temperature.

Grahic Jump Location
Fig. 2

Metal hydride container

Grahic Jump Location
Fig. 7

Fuel cell temperature (Tc), external wall temperature (Te), internal temperature (Ti), and hydrogen pressure (P) in the hydride container as a function of time for JH2  = 2 L min−1: (a) WTI condition and (b) TI condition

Grahic Jump Location
Fig. 8

Fuel cell temperature (Tc), external wall temperature (Te), internal temperature (Ti), and hydrogen pressure (P) in the hydride container as a function of time for JH2  = 4 L min−1: (a) WTI condition and (b) TI condition

Grahic Jump Location
Fig. 9

Dehydriding process heat (Qd) and heat generated at the fuel cell (Qfc) per unit time versus hydrogen flow rate (JH2)

Grahic Jump Location
Fig. 10

Hydrogen pressure (P) as a function of released hydrogen mass at different discharge flow rates

Grahic Jump Location
Fig. 11

Recovery efficiency of the hydrogen stored in the container as a function of hydrogen flow rate (JH2) for TI and WTI conditions

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In