0
Research Papers

Nonprismatic Air-Breathing Fuel Cells—Concept, Theory, Design, and Manufacturing

[+] Author and Article Information
Sriram Praneeth Isanaka

Department of Mechanical Engineering,
Missouri University of Science and Technology,
400 W 13th Street,
Rolla, MO 65401
e-mail: sihyd@mst.edu

Frank F. Liou

Bytnar Professor
Fellow ASME
Department of Mechanical Engineering,
Missouri University of Science and Technology,
400 W 13th Street,
Rolla, MO 65401
e-mail: liou@mst.edu

Joseph W. Newkirk

Professor
Department of Materials Science,
Missouri University of Science and Technology,
1201 N State Street,
Rolla, MO 65409
e-mail: jnewkirk@mst.edu

1Corresponding author.

Manuscript received December 8, 2015; final manuscript received October 28, 2016; published online November 22, 2016. Assoc. Editor: Umberto Desideri.

J. Electrochem. En. Conv. Stor. 13(2), 021006 (Nov 22, 2016) (11 pages) Paper No: JEECS-15-1018; doi: 10.1115/1.4035104 History: Received December 08, 2015; Revised October 28, 2016

This paper details the research into axis symmetric architecture (ASA) proton exchange membrane (PEM) fuel cells possessing nonprismatic cylindrical architecture. Advantages of the ASA include improved fuel flow, reduced sealing area and weight, and increased power densities. Numerical and analytical studies will show improvements to flow characteristics. The ASA design facilitates natural convective flow to promote improved reactant availability and the prototypes created also show the ease of manufacture and assembly. ASA designs, unlike traditional fuel cells, do not require clamping plates and fastening mechanisms and lead to prototypes with reduced size, weight, and cost.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Farooque, M. , and Maru, H. C. , 2001, “ Fuel Cells—The Clean and Efficient Power Generators,” Proc. IEEE, 89(12), pp. 1819–1829. [CrossRef]
Prater, K. B. , 1994, “ Polymer Electrolyte Fuel Cells: A Review of Recent Developments,” J. Power Sources, 51(1–2), pp. 129–144. [CrossRef]
Smith, W. , 2000, “ Role of Fuel Cells in Energy Storage,” J. Power Sources, 86(1), pp. 74–83. [CrossRef]
He, W. , Yi, J. S. , and Van Nguyen, T. , 2000, “ Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AIChE J., 46(10), pp. 2053–2064. [CrossRef]
Jeon, D. H. , Greenway, S. , Shimpalee, S. , and Van Zee, J. W. , 2008, “ The Effect of Serpentine Flow-Field Designs on PEM Fuel Cell Performance,” Int. J. Hydrogen Energy, 33(3), pp. 1052–1066. [CrossRef]
Nguyen, P. T. , Berning, T. , and Djilali, N. , 2004, “ Computational Model of a PEM Fuel Cell With Serpentine Gas Flow Channels,” J. Power Sources, 130(1–2), pp. 149–157. [CrossRef]
Wang, Z. H. , Wang, C. Y. , and Chen, K. S. , 2001, “ Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells,” J. Power Sources, 94(1), pp. 40–50. [CrossRef]
Rowe, A. , and Li, X. , 2001, “ Mathematical Modeling of Proton Exchange Membrane Fuel Cells,” J. Power Sources, 102(1–2), pp. 82–96. [CrossRef]
Shan, Y. , and Choe, S. Y. , 2005, “ A High Dynamic PEM Fuel Cell Model With Temperature Effects,” J. Power Sources, 145(1), pp. 30–39. [CrossRef]
Sivertsen, B. R. , and Djilali, N. , 2005, “ CFD-Based Modelling of Proton Exchange Membrane Fuel Cells,” J. Power Sources, 141(1), pp. 65–78. [CrossRef]
Ismail, M. S. , Ingham, D. B. , Hughes, K. J. , Ma, L. , and Pourkashanian, M. , 2013, “ Thermal Modelling of the Cathode in Air-Breathing PEM Fuel Cells,” Appl. Energy, 111, pp. 529–537. [CrossRef]
Ismail, M. S. , Ingham, D. B. , Hughes, K. J. , Ma, L. , and Pourkashanian, M. , 2014, “ An Efficient Mathematical Model for Air-Breathing PEM Fuel Cells,” Appl. Energy, 135, pp. 490–503. [CrossRef]
Baschuk, J. J. , and Li, X. , 2000, “ Modelling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding,” J. Power Sources, 86(1), pp. 181–196. [CrossRef]
Li, X. , Sabir, I. , and Park, J. , 2007, “ A Flow Channel Design Procedure for PEM Fuel Cells With Effective Water Removal,” J. Power Sources, 163(2), pp. 933–942. [CrossRef]
You, L. , and Liu, H. , 2002, “ A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells,” Int. J. Heat Mass Transfer, 45(11), pp. 2277–2287. [CrossRef]
Ferreira-Aparicio, P. , and Chaparro, A. M. , 2014, “ Novel Dead-Ended Anode Design for Self-Regulating Humidification in an Air-Breathing H2-PEM Fuel Cell,” 14th Polymer Electrolyte Fuel Cell Symposium, PEFC 2014—226th ECS Meeting, Cancun, Mexico, Oct. 5–9, 2014, Electrochemical Society, pp. 945–950.
Kumar, P. M. , and Parthasarathy, V. , 2013, “ A Passive Method of Water Management for an Air-Breathing Proton Exchange Membrane Fuel Cell,” Energy, 51, pp. 457–461. [CrossRef]
Mann, R. F. , Amphlett, J. C. , Hooper, M. A. I. , Jensen, H. M. , Peppley, B. A. , and Roberge, P. R. , 2000, “ Development and Application of a Generalized Steady-State Electrochemical Model for a PEM Fuel Cell,” J. Power Sources, 86(1), pp. 173–180. [CrossRef]
Um, S. , and Wang, C. Y. , 2004, “ Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells,” J. Power Sources, 125(1), pp. 40–51. [CrossRef]
Wang, C. , Nehrir, M. H. , and Shaw, S. R. , 2005, “ Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits,” IEEE Trans. Energy Convers., 20(2), pp. 442–451. [CrossRef]
Li, J. , Cai, W. , Zhang, Y. , Xu, G. , and Cheng, H. , 2015, “ 3D-Branched Rigid-Flexible Hybrid Sulfonated Polyamide for Proton Exchange Membranes (PEMs) in Fuel Cell Applications,” Energy Technol., 3(2), pp. 155–161. [CrossRef]
Bazylak, A. , Sinton, D. , Liu, Z. S. , and Djilali, N. , 2007, “ Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers,” J. Power Sources, 163(2), pp. 784–792. [CrossRef]
Pharoah, J. G. , 2005, “ On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells,” J. Power Sources, 144(1), pp. 77–82. [CrossRef]
Shimpalee, S. , Greenway, S. , and Van Zee, J. W. , 2006, “ The Impact of Channel Path Length on PEMFC Flow-Field Design,” J. Power Sources, 160(1), pp. 398–406. [CrossRef]
Shimpalee, S. , and Van Zee, J. W. , 2007, “ Numerical Studies on Rib and Channel Dimension of Flow-Field on PEMFC Performance,” Int. J. Hydrogen Energy, 32(7), pp. 842–856. [CrossRef]
Spernjak, D. , Prasad, A. K. , and Advani, S. G. , 2007, “ Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single-Serpentine PEM Fuel Cell,” J. Power Sources, 170(2), pp. 334–344. [CrossRef]
Wang, L. , Husar, A. , Zhou, T. , and Liu, H. , 2003, “ A Parametric Study of PEM Fuel Cell Performances,” Int. J. Hydrogen Energy, 28(11), pp. 1263–1272. [CrossRef]
Wang, L. , and Liu, H. , 2004, “ Performance Studies of PEM Fuel Cells With Interdigitated Flow Fields,” J. Power Sources, 134(2), pp. 185–196. [CrossRef]
Kandlikar, S. G. , and Lu, Z. , 2009, “ Thermal Management Issues in a PEMFC Stack—A Brief Review of Current Status,” Appl. Therm. Eng., 29(7), pp. 1276–1280. [CrossRef]
Satija, R. , Jacobson, D. L. , Arif, M. , and Werner, S. A. , 2004, “ In Situ Neutron Imaging Technique for Evaluation of Water Management Systems in Operating PEM Fuel Cells,” J. Power Sources, 129(2), pp. 238–245. [CrossRef]
Williamson, Z. R. , Kim, D. , Kwon, K. , Chun, D. , Lee, T. , and Squibb, C. W. , 2013, “ Evaluation of Fin Structure Effects on a Heated Air-Breathing Polymer Electrolyte Membrane (PEM) Fuel Cell,” Appl. Therm. Eng., 56(1–2), pp. 54–61. [CrossRef]
Tang, H. , Qi, Z. , Ramani, M. , and Elter, J. F. , 2006, “ PEM Fuel Cell Cathode Carbon Corrosion Due to the Formation of Air/Fuel Boundary at the Anode,” J. Power Sources, 158(2), pp. 1306–1312. [CrossRef]
Biesdorf, J. , Zamel, N. , and Kurz, T. , 2014, “ Influence of Air Contaminants on Planar, Self-Breathing Hydrogen PEM Fuel Cells in an Outdoor Environment,” J. Power Sources, 247, pp. 339–345. [CrossRef]
Hamelin, J. , Agbossou, K. , Laperrière, A. , Laurencelle, F. , and Bose, T. K. , 2001, “ Dynamic Behavior of a PEM Fuel Cell Stack for Stationary Applications,” Int. J. Hydrogen Energy, 26(6), pp. 625–629. [CrossRef]
El-Emam, S. H. , Mousa, A. A. , and Awad, M. M. , 2015, “ Effects of Stack Orientation and Vibration on the Performance of PEM Fuel Cell,” Int. J. Energy Res., 39(1), pp. 75–83. [CrossRef]
Fernandez-Moreno, J. , Guelbenzu, G. , Martin, A. J. , Folgado, M. A. , Ferreira-Aparicio, P. , and Chaparro, A. M. , 2013, “ A Portable System Powered With Hydrogen and One Single Air-Breathing PEM Fuel Cell,” Appl. Energy, 109, pp. 60–66. [CrossRef]
Borup, R. L. , Davey, J. R. , Garzon, F. H. , Wood, D. L. , and Inbody, M. A. , 2006, “ PEM Fuel Cell Electrocatalyst Durability Measurements,” J. Power Sources, 163(1), pp. 76–81. [CrossRef]
Cai, M. , Ruthkosky, M. S. , Merzougui, B. , Swathirajan, S. , Balogh, M. P. , and Oh, S. H. , 2006, “ Investigation of Thermal and Electrochemical Degradation of Fuel Cell Catalysts,” J. Power Sources, 160(2), pp. 977–986. [CrossRef]
Collier, A. , Wang, H. , Zi Yuan, X. , Zhang, J. , and Wilkinson, D. P. , 2006, “ Degradation of Polymer Electrolyte Membranes,” Int. J. Hydrogen Energy, 31(13), pp. 1838–1854. [CrossRef]
Colón-Mercado, H. R. , and Popov, B. N. , 2006, “ Stability of Platinum Based Alloy Cathode Catalysts in PEM Fuel Cells,” J. Power Sources, 155(2), pp. 253–263. [CrossRef]
Curtin, D. E. , Lousenberg, R. D. , Henry, T. J. , Tangeman, P. C. , and Tisack, M. E. , 2004, “ Advanced Materials for Improved PEMFC Performance and Life,” J. Power Sources, 131(1–2), pp. 41–48. [CrossRef]
Qi, Z. , He, C. , and Kaufman, A. , 2002, “ Effect of CO in the Anode Fuel on the Performance of PEM Fuel Cell Cathode,” J. Power Sources, 111(2), pp. 239–247. [CrossRef]
Kim, H. , Subramanian, N. P. , and Popov, B. N. , 2004, “ Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition,” J. Power Sources, 138(1–2), pp. 14–24. [CrossRef]
Barbir, F. , and Gómez, T. , 1997, “ Efficiency and Economics of Proton Exchange Membrane (PEM) Fuel Cells,” Int. J. Hydrogen Energy, 22(10–11), pp. 1027–1037. [CrossRef]
Bar-On, I. , Kirchain, R. , and Roth, R. , 2002, “ Technical Cost Analysis for PEM Fuel Cells,” J. Power Sources, 109(1), pp. 71–75. [CrossRef]
Lipman, T. E. , Edwards, J. L. , and Kammen, D. M. , 2004, “ Fuel Cell System Economics: Comparing the Costs of Generating Power With Stationary and Motor Vehicle PEM Fuel Cell Systems,” Energy Policy, 32(1), pp. 101–125. [CrossRef]
Chalk, S. G. , Miller, J. F. , and Wagner, F. W. , 2000, “ Challenges for Fuel Cells in Transport Applications,” J. Power Sources, 86(1), pp. 40–51. [CrossRef]
Cleghorn, S. J. C. , Ren, X. , Springer, T. E. , Wilson, M. S. , Zawodzinski, C. , Zawodzinski, T. A. , and Gottesfeld, S. , 1997, “ PEM Fuel Cells for Transportation and Stationary Power Generation Applications,” Int. J. Hydrogen Energy, 22(12), pp. 1137–1144. [CrossRef]
Nallathambi, V. , Lee, J. W. , Kumaraguru, S. P. , Wu, G. , and Popov, B. N. , 2008, “ Development of High Performance Carbon Composite Catalyst for Oxygen Reduction Reaction in PEM Proton Exchange Membrane Fuel Cells,” J. Power Sources, 183(1), pp. 34–42. [CrossRef]
Wang, B. , 2005, “ Recent Development of Non-Platinum Catalysts for Oxygen Reduction Reaction,” J. Power Sources, 152(1–2), pp. 1–15.
Wood, T. E. , Tan, Z. , Schmoeckel, A. K. , O'Neill, D. , and Atanasoski, R. , 2008, “ Non-Precious Metal Oxygen Reduction Catalyst for PEM Fuel Cells Based on Nitroaniline Precursor,” J. Power Sources, 178(2), pp. 510–516. [CrossRef]
Blakley, T. J. , Jayne, K. D. , and Kimble, M. C. , 2006, “ Spiral-Wound PEM Fuel Cells for Portable Applications,” Proton Exchange Membrane Fuel Cells 6—210th Electrochemical Society Meeting, pp. 1187–1195.
Bullecks, B. , Rengaswamy, R. , Bhattacharyya, D. , and Campbell, G. , 2011, “ Development of a Cylindrical PEM Fuel Cell,” Int. J. Hydrogen Energy, 36(1), pp. 713–719. [CrossRef]
Meyers, J. P. , and Maynard, H. L. , 2002, “ Design Considerations for Miniaturized PEM Fuel Cells,” J. Power Sources, 109(1), pp. 76–88. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

CAD model section of the ASA

Grahic Jump Location
Fig. 2

Comparison of fluid dynamics in serpentine flow channels between conventional prismatic and nonprismatic ASA designs (a) serpentine flow sections with multiple 90 deg elbow bends and (b) helical flow sections with multiple 90 deg elbow bends

Grahic Jump Location
Fig. 3

Comparison of fluid dynamics in straight flow channels between conventional prismatic and nonprismatic ASA designs (a) conventional, planar design with straight flow channels and (b) ASA with straight flow channels and multiple inlets and outlets

Grahic Jump Location
Fig. 4

Velocity diagram indicating the occurrence of the natural convective flow

Grahic Jump Location
Fig. 5

Mass fraction in straight channel flow field on conventional flat plate design (single point fuel entry and exit, indicating stagnant zones)

Grahic Jump Location
Fig. 6

Internal view of manifold design in ASA (multipoint entry and exit of fuel with limited manufacturing complexity)

Grahic Jump Location
Fig. 7

Mass fractions of air being displaced by hydrogen in a straight channel ASA at times (a) 0.19 s, (b) 0.35 s, and (c) 0.63 s, respectively

Grahic Jump Location
Fig. 8

Mass fractions of air being displaced by hydrogen in a pin channel ASA at times (a) 0.36 s, (b) 0.66 s, and (c) 1.04 s, respectively

Grahic Jump Location
Fig. 9

CAD representation of cross sections in straight channel designs

Grahic Jump Location
Fig. 10

Assembly drawing of flat plate design

Grahic Jump Location
Fig. 11

Assembly drawing of ASA

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In