0
Research Papers

Interfacial Impedance Studies of Multilayer Structured Electrolyte Fabricated With Solvent-Casted PEO10–LiN(CF3SO2)2 and Ceramic Li1.3Al0.3Ti1.7(PO4)3 and Its Application in All-Solid-State Lithium Ion Batteries

[+] Author and Article Information
Wei Liu

Department of Mechanical
and Aerospace Engineering,
Syracuse University,
Syracuse, NY 13244-1240
e-mail: wliu40@syr.edu

Ryan J. Milcarek

Department of Mechanical
and Aerospace Engineering,
Syracuse University,
Syracuse, NY 13244-1240
e-mail: rjmilcar@syr.edu

Ryan L. Falkenstein-Smith

Department of Mechanical
and Aerospace Engineering,
Syracuse University,
Syracuse, NY 13244-1240
e-mail: rlfalken@syr.edu

Jeongmin Ahn

Fellow ASME
Department of Mechanical
and Aerospace Engineering,
Syracuse University,
Syracuse, NY 13244-1240
e-mail: jeongahn@syr.edu

1Corresponding author.

Manuscript received August 18, 2016; final manuscript received November 14, 2016; published online December 7, 2016. Assoc. Editor: Peter Pintauro.

J. Electrochem. En. Conv. Stor. 13(2), 021008 (Dec 07, 2016) (6 pages) Paper No: JEECS-16-1110; doi: 10.1115/1.4035294 History: Received August 18, 2016; Revised November 14, 2016

Experimental studies and characterization of the interfacial impedance of a novel solvent-casted solid polymer electrolyte (SPE) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) ceramic bilayer electrolyte are conducted. Overall, resistance of the bilayer electrolyte decreased compared to single LATP ceramic electrolyte. The mechanism of the enhanced ion transportation at the interface is analyzed and discussed. Using the as-prepared multilayer electrolyte, all-solid-state lithium ion batteries (ASSLIBs) were fabricated with lithium metal as anode and LiMn2O4 (LMO) as cathode material. The charge/discharge properties and impedance of the cell at different temperatures were investigated. This work demonstrates the feasibility and potential of using a multilayer electrolyte structure for ASSLIBs with flexible geometries and dimensions for design.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Goodenough, J. , and Park, K. S. , 2013, “ The Li-Ion Rechargeable Battery: A Perspective,” J. Am. Chem. Soc., 135(4), pp. 1167–1176. [CrossRef] [PubMed]
Tarascon, J. M. , and Armand, M. , 2001, “ Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature, 414(6861), pp. 359–367. [CrossRef] [PubMed]
Armand, M. , and Tarascon, J. M. , 2008, “ Building Better Batteries,” Nature, 451(7179), pp. 652–657. [CrossRef] [PubMed]
Golubkov, A. W. , Fuchs, D. , Wagner, J. , Wiltsche, H. , Stangl, C. , Fauler, G. , Voitic, G. , Thalera, A. , and Hackere, V. , 2014, “ Thermal-Runaway Experiments on Consumer Li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes,” RSC Adv., 4(7), pp. 3633–3642. [CrossRef]
Rosso, M. , Brissot, C. , Teyssot, A. , Dollé, M. , Sannier, L. , Tarascon, J. M. , Bouchet, R. , and Lascaud, S. , 2006, “ Dendrite Short-Circuit and Fuse Effect on Li/Polymer/Li Cells,” Electrochim. Acta, 51(25), pp. 5334–5340. [CrossRef]
Wen, J. , Yu, Y. , and Chen, C. , 2012, “ A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions,” Mater. Express, 2(3), pp. 197–212. [CrossRef]
Song, J. Y. , Wang, Y. Y. , and Wan, C. C. , 1999, “ Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries,” J. Power Sources, 77(2), pp. 183–197. [CrossRef]
Takada, K. , 2013, “ Progress and Prospective of Solid-State Lithium Batteries,” Acta Mater., 61(3), pp. 759–770. [CrossRef]
Li, Q. , Itoh, T. , Imanishi, N. , Hirano, A. , Takeda, Y. , and Yamamoto, O. , 2003, “ All Solid Lithium Polymer Batteries With a Novel Composite Polymer Electrolyte,” Solid State Ionics, 159(1), pp. 97–109. [CrossRef]
Appetecchi, G. B. , Hassoun, J. , Scrosati, B. , Croce, F. , Cassel, F. , and Salomon, M. , 2003, “ Hot-Pressed, Solvent-Free, Nanocomposite, PEO-Based Electrolyte Membranes—II: All Solid-State Li/LiFePO4 Polymer Batteries,” J. Power Sources, 124(1), pp. 246–253. [CrossRef]
Kuratomi, J. , Iguchi, T. , Bando, T. , Aihara, Y. , Ono, T. , and Kuwana, K. , 2001, “ Development of Solid Polymer Lithium Secondary Batteries,” J. Power Sources, 97–98, pp. 801–803. [CrossRef]
Fergus, J. W. , 2010, “ Ceramic and Polymeric Solid Electrolytes for Lithium-Ion Batteries,” J. Power Sources, 195(15), pp. 4554–4569. [CrossRef]
Knauth, P. , 2009, “ Inorganic Solid Li Ion Conductors: An Overview,” Solid State Ionics, 180(14–16), pp. 911–916. [CrossRef]
Tenhaeff, W. E. , Perry, K. A. , and Dudney, N. J. , 2012, “ Impedance Characterization of Li Ion Transport at the Interface Between Laminated Ceramic and Polymeric Electrolytes,” J. Electrochem. Soc., 159(12), pp. A2118–A2123. [CrossRef]
Chan, C. K. , Peng, H. , Liu, G. , McIlwrath, K. , Zhang, X. F. , Huggins, R. A. , and Cui, Y. , 2008, “ High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnol., 3(1), pp. 31–35. [CrossRef] [PubMed]
Zheng, G. Y. , Lee, S. W. , Liang, Z. , Lee, H. W. , Yan, K. , Yao, H. B. , Wang, H. T. , Li, W. Y. , Chu, S. , and Cui, Y. , 2014, “ Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes,” Nat. Nanotechnol., 9(8), pp. 618–623. [CrossRef] [PubMed]
Heitjans, P. , and Indris, S. , 2001, “ Diffusion and Ionic Conduction in Nanocrystalline Ceramics,” MRS Proceedings, 676.
Druger, S. D. , Rather, M. A. , and Nitzan, A. , 1983, “ Polymeric Solid Electrolytes: Dynamic Bond Percolation and Free Volume Models for Diffusion,” Solid State Ionics, 9–10(Part 2), pp. 1115–1120. [CrossRef]
Croce, F. , Appetecchi, G. B. , Persi, L. , and Scrosati, B. , 1998, “ Nanocomposite Polymer Electrolytes for Lithium Batteries,” Nature, 394(30), pp. 456–458. [CrossRef]
Croce, F. , Settimi, L. , and Scrosati, B. , 2006, “ Superacid ZrO2-Added, Composite Polymer Electrolytes With Improved Transport Properties,” Electrochem. Commun., 8(2), pp. 364–368. [CrossRef]
Weston, J. E. , and Steele, B. C. H. , 1982, “ Effects of Inert Fillers on the Mechanical and Electrochemical Properties of Lithium Salt-Poly(Ethylene Oxide) Polymer Electrolytes,” Solid State Ionics, 7(1), pp. 75–79. [CrossRef]
Syzdek, J. , Armand, M. , Falkowski, P. , Gizowska, M. , Karłowicz, M. , Łukaszuk, Ł. , Marcinek, M. , Zalewska, A. , Szafran, M. , Masquelier, C. , Tarascon, J. M. , Wieczorek, W. G. , and Zukowska, Z. G. , 2011, “ Reversed Phase Composite Polymeric Electrolytes Based on Poly(Oxyethylene),” Chem. Mater., 23(7), pp. 1785–1797. [CrossRef]
Vorrey, S. , and Teeters, D. , 2003, “ Study of the Ion Conduction of Polymer Electrolytes Confined in Micro and Nanopores,” Electrochim. Acta, 48(14), pp. 2137–2141. [CrossRef]
Abudakka, M. , Decker, D. S. , Sutherlin, L. T. , and Teeters, D. , 2014, “ Ceramic/Polymer Interpenetrating Networks Exhibiting Increased Ionic Conductivity With Temperature Control of Ion Conduction for Thermal Runaway Protection,” Int. J. Hydrogen Energy, 39(6), pp. 2988–2996. [CrossRef]
Stephan, A. M. , Nahm, K. S. , Kulandainathan, M. A. , Ravi, G. , and Wilson, J. , 2006, “ Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVdF-HFP) Based Composite Electrolytes for Lithium Batteries,” Eur. Polym. J., 42(8), pp. 1728–1734. [CrossRef]
Appetecchi, G. B. , and Passerini, S. , 2000, “ PEO-Carbon Composite Lithium Polymer Electrolyte,” Electrochim. Acta, 45(13), pp. 2139–2145. [CrossRef]
Nairn, K. M. , Best, A. S. , Newman, P. J. , MacFarlane, D. R. , and Forsyth, M. , 1999, “ Ceramic-Polymer Interface in Composite Electrolytes of Lithium Aluminium Titanium Phosphate and Polyetherurethane Polymer Electrolyte,” Solid State Ionics, 121(1), pp. 115–119. [CrossRef]
Abe, T. , Ohtsuka, M. , Sagane, F. , Iriyama, Y. , and Ogumi, Z. , 2004, “ Lithium Ion Transfer at the Interface Between Lithium-Ion-Conductive Solid Crystalline Electrolyte and Polymer Electrolyte,” J. Electrochem. Soc., 151(11), pp. A1950–A1953. [CrossRef]
Tenhaeff, W. E. , Yu, X. , Hong, K. , Perry, K. A. , and Dudney, N. J. , 2011, “ Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes for Lithium Ion Batteries,” J. Electrochem. Soc., 158(10), pp. A1143–A1149. [CrossRef]
Asl, N. M. , Keith, J. , Lim, C. , Zhu, L. , and Kim, Y. , 2012, “ Inorganic Solid/Organic Liquid Hybrid Electrolyte for Use in Li-Ion Battery,” Electrochim. Acta, 79, pp. 8–16. [CrossRef]
Jackman, S. D. , and Cutler, R. A. , 2013, “ Stability of NaSICON-Type Li1.3Al0.3Ti1.7P3O12 in Aqueous Solutions,” J. Power Sources, 230, pp. 251–260. [CrossRef]
Sandrine, D. , Aude, P. , Laurent, P. , Philippe, V. , Viviane, T. P. R. , Pascal, L. , Pierre-Louis, T. , Patrice, S. , and Florence, A. , 2013, “ Lithium Conducting Solid Electrolyte Li1.3Al0.3Ti1.7(PO4)3 Obtained Via Solution Chemistry,” J. Eur. Ceram. Soc., 33(6), pp. 1145–1153. [CrossRef]
Kumar, B. , and Scanlon, L. G. , 1994, “ Polymer-Ceramic Composite Electrolytes,” J. Power Sources, 52(2), pp. 261–268. [CrossRef]
Zhang, M. , Takahashi, K. , Uechi, I. , Takeda, Y. , Yamamoto, O. , Im, D. , Lee, D. , Chi, B. , Pu, J. , Li, J. , and Imanishi, N. , 2013, “ Water-Stable Lithium Anode With Li1.4Al0.4Ge1.6(PO4)3-TiO2 Sheet Prepared by Tape Casting Method for Lithium-Air Batteries,” J. Power Sources, 235, pp. 117–121. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of the multilayer solid-electrolyte configuration

Grahic Jump Location
Fig. 2

XRD pattern of Li1.3Al0.3Ti1.7(PO4)3

Grahic Jump Location
Fig. 3

SEM image of the multilayer composite electrolyte at different magnifications

Grahic Jump Location
Fig. 4

Nyquist plot of single electrolyte of Au/LATP/Au, SS (stainless steel)/solvent-casted SPE/SS, and Au/LATP + solvent-casted SPE/SS at (a) 23 °C, (b) 50 °C, (c) 80 °C, and (d) ratio of resistance of bilayer electrolyte to total resistance of SPE + LATP

Grahic Jump Location
Fig. 5

(a) Schematic structure of interface of solvent-casted SPE/LATP and (b) lithium ion transportation mechanism at the interface

Grahic Jump Location
Fig. 6

Charge/discharge voltage as a function of specific capacity of Li/multilayer electrolyte/LMO coin cell at different temperatures at 1 C discharge/charge rate and different cutoff voltages

Grahic Jump Location
Fig. 10

Charge/discharge specific capacities as a function of cycle number of Li/multilayer electrolyte/LMO coin cell at 70 °C and 1 C discharge/charge rate

Grahic Jump Location
Fig. 9

Charge/discharge voltage curve as a function of specific capacity of Li/multilayer electrolyte/LMO coin cell at different cycle times at 70 °C and 1 C discharge/charge rate

Grahic Jump Location
Fig. 8

Experimental and fitting impedance of the Li/multilayer electrolyte/LMO coin cell at 70 °C, and the equivalent circuit model

Grahic Jump Location
Fig. 7

Impedance of the Li/multilayer electrolyte/LMO coin cell at 23 °C and 50 °C

Grahic Jump Location
Fig. 11

Impedance development versus cycling number at 70 °C and 1 C charge/discharge rate

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In