0
Research Papers

Thermal Cycle Stability of Sealing Glass for 8YSZ Coated Cr-Containing Metal Interconnect

[+] Author and Article Information
Lian Peng, Yang Bai

State Key Laboratory of Multiphase
Complex Systems,
Institute of Process Engineering,
Chinese Academy of Sciences,
Beijing 100190, China

Qingshan Zhu

State Key Laboratory of Multiphase
Complex Systems,
Institute of Process Engineering,
Chinese Academy of Sciences,
Zhong Guan Cun, Haidian District,
P.O. Box 353,
Beijing 100190, China
e-mail: qszhu@home.ipe.ac.cn

1Corresponding author.

Manuscript received November 6, 2016; final manuscript received December 16, 2016; published online January 24, 2017. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 13(4), 041002 (Jan 24, 2017) (7 pages) Paper No: JEECS-16-1150; doi: 10.1115/1.4035624 History: Received November 06, 2016; Revised December 16, 2016

An 8 mol. % yttria stabilized zirconia (8YSZ) coating has been prepared on a Cr-containing stainless steel interconnect (SS410) to improve the chemical compatibility of a BaO–B2O3–SiO2 sealing glass with the SS410. Three different methods as, grinding the 8YSZ coating prior to the sealing (fixture A), putting an interlayer glass on the 8YSZ coating prior to the sealing (fixture B), and exerting an external compressive force of ∼10.28 kPa during the sealing (fixture C), have been used to improve the thermal cycle stability of the sealing glass. The fixture A (using the grinding method) and the fixture B (using the interlayer method) both show poor thermal cycle stability. For the fixture C, the external compressive force is found to help the self-healing of the sealing glass. Due to the good chemical compatibility of the sealing glass with the 8YSZ coating, the sealing glass of the fixture C exhibits super long-term thermal cycle stability. The leak rates of the sealing glass of the fixture C show nearly no increase up to 280 thermal cycles, after which the leak rates increase slowly with the thermal cycles and the leak rate is still less than the Solid Energy Convergence Alliance (SECA) limit at the 626th thermal cycle.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chou, Y. S. , Stevenson, Z. W. , and Singh, P. , 2005, “ Thermal Cycle Stability of a Novel Glass-Mica Composite Seal for Solid Oxide Fuel Cells: Effect of Glass Volume Fraction and Stresses,” J. Power Sources, 152(1), pp. 168–174. [CrossRef]
Chou, Y. S. , and Stevenson, J. W. , 2005, “ Long-Term Thermal Cycling of Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells,” J. Power Sources, 140(2), pp. 340–345. [CrossRef]
Zhu, Q. S. , Peng, L. , and Zhang, T. , 2013, “ Sealants for Planar Solid Oxide Fuel Cells,” Materials for High-Temperature Fuel Cells, Wiley-VCH, Weinheim, Germany, pp. 215–244.
Chou, Y. S. , Thomsen, E. C. , Choi, J. P. , and Stevenson, J. W. , 2012, “ Compliant Alkali Silicate Sealing Glass for Solid Oxide Fuel Cell Applications: Combined Stability in Isothermal Ageing and Thermal Cycling With YSZ Coated Ferritic Stainless Steels,” J. Power Sources, 197, pp. 154–160. [CrossRef]
Zhu, Q. S. , Peng, L. , and Zhang, T. , 2007, “ Stable Glass Seals for Intermediate Temperature (IT) SOFC Applications,” Fuel Cell Electronics Packaging, Springer, New York, pp. 33–60.
Peng, L. , and Zhu, Q. S. , 2009, “ Thermal Cycle Stability of BaO–B2O3–SiO2 Sealing Glass,” J. Power Sources, 194(2), pp. 880–885. [CrossRef]
Yang, Z. G. , Xia, G. G. , Meinhardt, K. D. , Weil, K. S. , and Stevenson, J. W. , 2004, “ Chemical Stability of Glass Seal Interfaces in Intermediate Temperature Solid Oxide Fuel Cells,” J. Mater. Eng. Perform., 13(3), pp. 327–334. [CrossRef]
Yang, Z. G. , Stevenson, J. W. , and Meinhardt, K. D. , 2003, “ Chemical Interactions of Barium-Calcium-Aluminosilicate-Based Sealing Glasses With Oxidation Resistant Alloys,” Solid State Ionics, 160(3–4), pp. 213–225. [CrossRef]
Yang, Z. G. , Meinhardt, K. D. , and Stevenson, J. W. , 2003, “ Chemical Compatibility of Barium-Calcium-Aluminosilicate-Based Sealing Glasses With the Ferritic Stainless Steel Interconnect in SOFCs,” J. Electrochem. Soc., 150(8), pp. A1095–A1101. [CrossRef]
Chou, Y. S. , Stevenson, J. W. , and Singh, P. , 2007, “ Novel Refractory Alkaline Earth Silicate Sealing Glasses for Planar Solid Oxide Fuel Cells,” J. Electrochem. Soc., 154(7), pp. B644–B651. [CrossRef]
Chou, Y. S. , Thomsen, E. C. , Williams, R. T. , Choi, J. P. , Canfield, N. L. , Bonnett, J. F. , Stevenson, J. W. , Shyam, A. , and Curzio, E. L. , 2011, “ Compliant Alkali Silicate Sealing Glass for Solid Oxide Fuel Cell Applications: Thermal Cycle Stability and Chemical Compatibility,” J. Power Sources, 196(5), pp. 2709–2716. [CrossRef]
Chou, Y. S. , Thomsen, E. C. , Choi, J. P. , and Stevenson, J. W. , 2012, “ Compliant Alkali Silicate Sealing Glass for Solid Oxide Fuel Cell Applications: The Effect of Protective YSZ Coating on Electrical Stability in Dual Environment,” J. Power Sources, 202, pp. 149–156. [CrossRef]
Smeacetto, F. , Miranda, A. D. , Polo, S. C. , Molin, S. , Boccaccini, D. , Salvo, M. , and Boccaccini, A. R. , 2015, “ Electrophoretic Deposition of Mn1.5Co1.5O4 on Metallic Interconnect and Interaction With Glass-ceramic Sealant for Solid Oxide Fuel Cells Application,” J. Power Sources, 280, pp. 379–386. [CrossRef]
Celik, S. , 2015, “ Influential Parameters and Performance of a Glass-Ceramic Sealant for Solid Oxide Fuel Cells,” Ceram. Int., 41(2), pp. 2744–2751. [CrossRef]
Smeacetto, F. , Miranda, A. D. , Chrysanthou, A. , Bernardo, E. , Secco, M. , Bindi, M. , Salvo, M. , Sabato, A. G. , and Ferraris, M. , 2014, “ Novel Glass-Ceramic Composition as Sealant for SOFCs,” J. Am. Ceram. Soc., 97(12), pp. 3835–3842. [CrossRef]
Chou, Y. S. , Stevenson, J. W. , and Choi, J. P. , 2014, “ Long-Term Evaluation of Solid Oxide Fuel Cell Candidate Materials in a 3-Cell Generic Stack Test Fixture, Part III: Stability and Microstructure of Ce-(Mn,Co)-Spinel Coating, AISI441 Interconnect, Alumina Coating, Cathode and Anode,” J. Power Sources, 257, pp. 444–453. [CrossRef]
Chou, Y. S. , Stevenson, J. W. , and Choi, J. P. , 2014, “ Long-Term Evaluation of Solid Oxide Fuel Cell Candidate Materials in a 3-Cell Generic Short Stack Fixture, Part I: Test Fixture, Sealing, and Electrochemical Performance,” J. Power Sources, 255, pp. 1–8. [CrossRef]
Chou, Y. S. , Stevenson, J. W. , and Choi, J. P. , 2014, “ Long-Term Evaluation of Solid Oxide Fuel Cell Candidate Materials in a 3-Cell Generic Short Stack Fixture, Part II: Sealing Glass Stability, Microstructure and Interfacial Reactions,” J. Power Sources, 250, pp. 166–173. [CrossRef]
Jin, T. , Naylor, M. O. , Shelby, J. E. , and Misture, S. T. , 2013, “ Galliosilicate Glasses for Viscous Sealants in Solid Oxide Fuel Cell Stacks: Part III: Behavior in Air and Humidified Hydrogen,” Int. J. Hydrogen Energy, 38(36), pp. 16308–16319. [CrossRef]
Misture, S. T. , Naylor, M. O. , Jin, T. , and Shelby, J. E. , 2013, “ Galliosilicate Glasses for Viscous Sealants in Solid Oxide Fuel Cell Stacks: Part II: Interactions With Yttria Stabilized Zirconia and Stainless Steel Coated With Alumina,” Int. J. Hydrogen Energy, 38(36), pp. 16328–16337. [CrossRef]
Yung, T. Y. , Tseng, H. P. , Yang, P. , and Liu, L. K. , 2013, “ The Effects of Thermal Aging on Metallic Interconnects of Solid Oxide Fuel Cells,” Mater. Res. Innovations, 17(S2), pp. 129–135. [CrossRef]
Smeacetto, F. , Salvo, M. , Santarelli, M. , Leone, P. , Villalba, G. A. O. , Lanzini, A. , Ajitdoss, L. C. , and Ferraris, M. , 2013, “ Performance of a Glass-Ceramic Sealant in a SOFC Short Stack,” Int. J. Hydrogen Energy, 38(1), pp. 588–596. [CrossRef]
Chou, Y. S. , Stevenson, J. W. , and Choi, J. P. , 2013, “ Evaluation of a Single Cell and Candidate Materials With High Water Content Hydrogen in a Generic Solid Oxide Fuel Cell Stack Test Fixture, Part II: Materials and Interface Characterization,” Int. J. Appl. Ceram. Technol., 10(1), pp. 97–106. [CrossRef]
Chou, Y. S. , Choi, J. P. , and Stevenson, J. W. , 2012, “ Compliant Alkali Silicate Sealing Glass for Solid Oxide Fuel Cell Applications: The Effect of Protective Alumina Coating on Electrical Stability in Dual Environment,” Int. J. Hydrogen Energy, 37(23), pp. 18372–18380. [CrossRef]
Choi, J. P. , Weil, K. S. , Chou, Y. M. , Stevenson, J. W. , and Yang, Z. G. , 2011, “ Development of MnCoO Coating With New Aluminizing Process for Planar SOFC Stacks,” Int. J. Hydrogen Energy, 36(7), pp. 4549–4556. [CrossRef]
Mahapatra, M. K. , and Lu, K. , 2011, “ Seal Glass Compatibility With Bare and (Mn,Co)3O4 Coated Crofer 22 APU Alloy in Different Atmospheres,” J. Power Sources, 196(2), pp. 700–708. [CrossRef]
Mahapatra, M. K. , and Lu, K. , 2010, “ Seal Glass Compatibility With Bare and (Mn,Co)3O4 Coated AISI 441 Alloy in Solid Oxide Fuel/Electrolyzer Cell Atmospheres,” Int. J. Hydrogen Energy, 35(21), pp. 11908–11917. [CrossRef]
Chou, Y. S. , Stevenson, J. W. , Xia, G. G. , and Yang, Z. G. , 2010, “ Electrical Stability of a Novel Sealing Glass With (Mn,Co)-Spinel Coated Crofer22APU in a Simulated SOFC Dual Environment,” J. Power Sources, 195(17), pp. 5666–5673. [CrossRef]
Widgeon, S. J. , Corral, E. L. , Spilde, M. N. , and Loehman, R. E. , 2009, “ Glass-to-Metal Seal Interfacial Analysis Using Electron Probe Microscopy for Reliable Solid Oxide Fuel Cells,” J. Am. Ceram. Soc., 92(4), pp. 781–786. [CrossRef]
Chen, H. , Lucas, J. A. , Priyantha, W. , Kopczyk, M. , Smith, R. J. , Lund, K. , Key, C. , Finsterbusch, M. , Gannon, P. E. , Deibert, M. , Gorokhovsky, V. I. , Shutthanandan, V. , and Nachimuthu, P. , 2008, “ Thermal Stability and Oxidation Resistance of TiCrAlYO Coatings on SS430 for Solid Oxide Fuel Cell Interconnect Applications,” Surf. Coat. Technol., 202(19), pp. 4820–4824. [CrossRef]
Yang, Z. G. , 2008, “ Recent Advances in Metallic Interconnects for Solid Oxide Fuel Cells,” Int. Mater. Rev., 53(1), pp. 39–54. [CrossRef]
Singh, R. N. , 2007, “ Sealing Technology for Solid Oxide Fuel Cells (SOFC),” Int. J. Appl. Ceram. Technol., 4(2), pp. 134–144. [CrossRef]
Zhang, Z. , Zhu, K. L. , Liu, L. J. , Lu, X. G. , Wu, G. X. , and Li, C. H. , 2013, “ Preparation of BaZrO3 Crucible and Its Interfacial Reaction With Molten Titanium Alloys,” J. Chin. Ceram. Soc., 41(9), pp. 1278–1283.

Figures

Grahic Jump Location
Fig. 1

Typical thermal expansion curves of the interlayer glass and sealing glass

Grahic Jump Location
Fig. 2

Optical micrographs of the three different fixtures after the thermal cycle tests: (a) the fixture A, (b) the fixture B, and (c) the fixture C

Grahic Jump Location
Fig. 3

Low magnification SEM images of the cross section of (a) the fixture A, (b) the fixture B, and (c) the fixture C

Grahic Jump Location
Fig. 4

The dependence of the leak rates of the three fixtures on thermal cycles

Grahic Jump Location
Fig. 5

The SEM images of the 8YSZ coating cross section: (a) after grinding and (b) before grinding

Grahic Jump Location
Fig. 6

A SEM image of the sealing glass/8YSZ coating interface of the fixture A

Grahic Jump Location
Fig. 7

SEM images of the cross section of the fixture B: (a) a low magnification, (b) a high magnification of the left portion of the marked area in (a), and (c) a high magnification of the right portion of the marked area in (a)

Grahic Jump Location
Fig. 8

SEM images of the cross section of the fixture C: (a) a low magnification and (b) a high magnification

Grahic Jump Location
Fig. 9

The long-term thermal cycle stability of the sealing glass for the fixture C

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In