0
Technical Brief

Electrochemical Performance Optimization of Li2NixFe1−xSiO4 Cathode Materials for Lithium-Ion Batteries

[+] Author and Article Information
Atef Y. Shenouda

Central Metallurgical Research and
Development Institute (CMRDI),
Tebbin, P.O. Box 87,
Helwan, Cairo 11412, Egypt
e-mail: ayshenouda@yahoo.com

M. M. S. Sanad

Central Metallurgical Research and
Development Institute (CMRDI),
Tebbin, P.O. Box 87,
Helwan, Cairo 11412, Egypt

Manuscript received January 5, 2017; final manuscript received March 19, 2017; published online May 9, 2017. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 14(2), 024501 (May 09, 2017) (5 pages) Paper No: JEECS-17-1005; doi: 10.1115/1.4036318 History: Received January 05, 2017; Revised March 19, 2017

Li2NixFe1−xSiO4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) samples were prepared by sol–gel process. The crystal structure of prepared samples of Li2NixFe1−xSiO4 was characterized by XRD. The different crystallographic parameters such as crystallite size and lattice cell parameters have been calculated. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) investigations were carried out explaining the morphology and function groups of the synthesized samples. Furthermore, electrochemical impedance spectra (EIS) measurements are applied. The obtained results indicated that the highest conductivity is achieved for Li2Ni0.4Fe0.6SiO4 electrode compound. It was observed that Li/Li2Ni0.4Fe0.6SiO4 battery has initial discharge capacity of 164 mAh g−1 at 0.1 C rate. The cycle life performance of all Li2NixFe1−xSiO4 batteries was ranged between 100 and 156 mAh g−1 with coulombic efficiency range between 70.9% and 93.9%.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hu, M. , Pang, X. , and Zhou, Z. , 2013, “ Recent Progress in High-Voltage Lithium ion Batteries,” J. Power Sources, 237(1), pp. 229–242. [CrossRef]
Wang, X. , Qing, C. , Zhang, Q. , Fan, W. , Huang, X. , Yang, B. , and Cui, J. , 2014, “ Facile Synthesis and Enhanced Electrochemical Performance of Li2FeSiO4/C/Reduced Graphene Oxide Nanocomposites,” Electrochim. Acta, 134, pp. 371–376. [CrossRef]
Shenouda, A. Y. , and Liu, H. K. , 2010, “ Preparation, Characterization, and Electrochemical Performance of Li2CuSnO4 and Li2CuSnSiO6 Electrodes for Lithium Batteries,” J. Electrochem. Soc., 157(11), pp. A1183–A1187. [CrossRef]
Qu, L. , Liu, Y. , Fang, S. , Yang, L. , and Hirano, S. , 2015, “ Li2FeSiO4 Coated by Sorbitanlaurat-Derived Carbon as Cathode of High-Performance Lithium-Ion Battery,” Electrochim. Acta, 163(1), pp. 123–131. [CrossRef]
Shi, L. , Xie, W. , Ge, Q. , Wang, S. , Chen, D. , Qin, L. , Fan, M. , Bai, L. , Chen, Z. , Shen, H. , Tian, G. , Lv, C. , and Shu, K. , 2015, “ Preparation and Electrochemical Performances of LiNi0.5Mn0.5O2 Cathode Materials for Lithium-Ion Batteries,” Int. J. Electrochem. Sci., 10(6), pp. 4696–4705.
Wei, C. , Deng, J. , Xi, L. , Zhou, H. , Wang, Z. , Chung, C. Y. , Yao, Q. , and Rao, G. , 2013, “ High Power LiMn2O4 Hollow Microsphere Cathode Materials for Lithium Ion Batteries,” Int. J. Electrochem. Sci., 8(5), pp. 6775–6783.
Nyten, A. , Kamali, S. , Hanggstrom, L. , Gustafsson, T. , and Thomas, J. O. , 2006, “ The Lithium Extraction/Insertion Mechanism in Li2FeSiO4,” J. Mater. Chem., 16(23), pp. 2266–2272. [CrossRef]
Shenouda, A. Y. , and Liu, H. K. , 2009, “ Studies on Electrochemical Behaviour of Zinc-Doped LiFePO4 for Lithium Battery Positive Electrode,” J. Alloys Compd., 477(1–2), pp. 498–503. [CrossRef]
Liu, Y. , Mi, C. H. , Yuan, C. Z. , and Zhang, X. G. , 2009, “ Improvement of Electrochemical and Thermal Stability of LiFePO4 Cathode Modified by CeO2,” J. Electroanal. Chem., 628(1–2), pp. 73–80. [CrossRef]
Huang, H. , Yin, S. C. , and Nazar, L. F. , 2001, “ Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates,” Electrochem. Solid-State Lett., 4(10), pp. A170–A172. [CrossRef]
Armand, M. , Michot, C. , Ravet, N. , Simoneau, M. , and Hovington, P. , 2000, “Lithium Insertion Electrode Materials Based on Orthosilicate Derivatives,” U.S. Patent No. 6085015.
Zhang, S. , Deng, C. , and Yang, S. Y. , 2009, “ Preparation of Nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries,” Electrochem. Solid-State Lett., 12(7), pp. A136–A139. [CrossRef]
Dominko, R. , Bele, M. , Gaberscek, M. , Remskar, M. , Hanzel, D. , Pejovnik, S. , and Jamnik, J. , 2006, “ Porous Olivine Composites Synthesized by Sol–Gel Technique,” J. Power Sources, 153(2), pp. 274–280. [CrossRef]
Nyten, A. , Abouimrane, A. , Armand, M. , Gustafsson, T. , and Thomas, J. O. , 2005, “ Electrochemical Performance of Li2FeSiO4 as a New Li-Battery Cathode Material,” Electrochem. Commun., 7(2) pp. 156–160. [CrossRef]
Zaghib, K. , Salah, A. A. , Ravet, N. , Mauger, A. , Gendron, F. , and Julien, C. M. , 2006, “ Structural, Magnetic and Electrochemical Properties of Lithium Iron Orthosilicate,” J. Power Sources, 160(2), pp. 1381–1386. [CrossRef]
Li, Y.-X. , Gong, Z.-L. , and Yang, Y. , 2007, “ Synthesis and Characterization of Li2MnSiO4/C Nanocomposite Cathode Material for Lithium Ion Batteries,” J. Power Sources, 174(2), pp. 528–532. [CrossRef]
Zhang, Q. , Zhao, Y. , Su, C. , and Li, M. , 2011, “ Nano/Micro Lithium Transition Metal (Fe, Mn, Co and Ni) Silicate Cathode Materials for Lithium Ion Batteries,” Recent Pat. Nanotechnol., 5(3), pp. 225–233. [CrossRef] [PubMed]
Chen, W. H. , Lan, M. , Zhu, D. , Wang, C. , Xue, S. , Yang, C. C. , Li, Z. X. , Zhang, J. , and Mi, L. W. , 2013, “ Synthesis, Characterization and Electrochemical Performance of Li2FeSiO4/C for Lithium-Ion Batteries,” RSC Adv., 3(2), pp. 408–412. [CrossRef]
Guo, H. , Cao, X. , Li, X. , Li, L. , Li, X. , Wang, Z. , Peng, W. , and Li, Q. , 2010, “ Optimum Synthesis of Li2Fe1−xMnxSiO4/C Cathode for Lithium-Ion Batteries,” Electrochim. Acta, 55(27), pp. 8036–8042. [CrossRef]
Zhang, S. , Deng, C. , Fu, B. L. , Yang, S. Y. , and Ma, L. , 2010, “ Effects of Cr Doping on the Electrochemical Properties of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries,” Electrochim. Acta, 55(28), pp. 8482–8489. [CrossRef]
Zhang, L.-L. , Sun, H.-B. , Yang, X. L. , Wen, Y. W. , Huang, Y. H. , Li, M. , Peng, G. , Tao, H. C. , Ni, S. B. , and Liang, G. , 2015, “ Study on Electrochemical Performance and Mechanism of V-Doped Li2FeSiO4 Cathode Material for Li-Ion Batteries,” Electrochim. Acta, 152, pp. 496–504. [CrossRef]
Deng, C. , Zhang, S. , Fu, B. L. , Yang, S. Y. , and Ma, L. , 2010, “ Characterization of Li2MnSiO4 and Li2FeSiO4 Cathode Materials Synthesized Via a Citric Acid Assisted Sol–Gel Method,” Mater. Chem. Phys., 120(1), pp. 14–17. [CrossRef]
Yang, R. , Liu, X.-Y. , Qu, Y. , Lei, J. , and Ahn, J. H. , 2012, “ Synthesis of Nanostructured Li2FeSiO4/C Cathode for Lithium-Ion Battery by Solution Method,” Trans. Nonferrous Met. Soc. China, 22(10), pp. 2529−2534. [CrossRef]
Zhang, Z. , Liu, X. , Wang, L. , Wu, Y. , Zhao, H. , and Chen, B. , 2015, “ Synthesis of Li2FeSiO4/C Nanocomposite Via a Hydrothermal-Assisted Sol–Gel Process,” Solid State Ionics, 276, pp. 33–39. [CrossRef]
Li, M. , Zhang, L.-L. , Yang, X. L. , Huang, Y. H. , Sun, H. B. , Ni, S. B. , and Tao, H. C. , 2015, “ Synthesis and Electrochemical Performance of Li2FeSiO4/C Cathode Material Using Ascorbic Acid as an Additive,” J. Solid State Electrochem., 19(2), pp. 415–421. [CrossRef]
Oghbaei, M. , Baniasadi, F. , and Asgari, S. , 2016, “ Lithium Iron Silicate Sol–Gel Synthesis and Electrochemical Investigation,” J. Alloys Compd., 672, pp. 93–97. [CrossRef]
Herle, P. S. , Ellis, B. , Coombs, N. , and Nazar, L. F. , 2004, “ Nano-Network Electronic Conduction in Iron and Nickel Olivine Phosphates,” Nat. Mater., 3(3), pp. 147–152. [CrossRef] [PubMed]
Zhong, G. , Li, Y. , Yan, P. , Liu, Z. , Xie, M. , and Lin, H. , 2010, “ Structural, Electronic, and Electrochemical Properties of Cathode Materials Li2MSiO4 (M = Mn, Fe, and Co): Density Functional Calculations,” J. Phys. Chem. C, 114(8), pp. 3693–3700. [CrossRef]
Zhang, L. , Duan, S. , Yang, X. , Liang, G. , Huang, Y. , Cao, X. , Yang, J. , Li, M. , Croft, M. C. , and Lewis, C. , 2015, “ New Insights Into the Electrochemical Performance of Li2MnSiO4: Effect of Cationic Substitutions,” J. Mater. Chem. A, 3(11), pp. 6004–6011. [CrossRef]
Sanad, M. M. S. , Rashad, M. M. , Abdel-Aal, E. A. , El-Shahat, M. F. , and Powers, K. , 2014, “ Effect of Y3+, Gd 3+ and La3+ Dopant Ions on Structural, Optical and Electrical Properties of o-Mullite Nanoparticles,” J. Rare Earths, 32(1), pp. 37–42. [CrossRef]
Luo, S. H. , Wang, M. , Zhu, X. , and Geng, G. H. , 2012, “ Hydrothermal Synthesis of Li2MnSiO4 Powders as a Cathode Material for Lithium Ion Cells,” Key Eng. Mater., 512–515, pp. 1588–1591. [CrossRef]
Pandey, M. , Ramar, V. , Balaya, P. , and Kshirsagar, R. J. , 2015, “ Infrared Spectroscopy of Li2MnSiO4: A Cathode Material for Li Ion Batteries,” AIP Conf. Proc., 1665(1), p. 140044.
Jaén, J. A. , Iglesias, J. , Muñoz, A. , Tabares, J. A. , and Pérez Alcázar, G. A. , 2015, “ Characterization of Magnesium Doped Lithium Iron Silicate,” Croat. Chem. Acta, 88(4), pp. 487–493. [CrossRef]
Kojima, T. , Kojima, A. , Miyuki, T. , Okuyama, Y. , and Sakai, T. , 2011, “ Synthesis Method of the Li-Ion Battery Cathode Material Li2FeSiO4 Using a Molten Carbonate Flux,” J. Electrochem. Soc., 158(12), pp. A1340–A1346. [CrossRef]
Xu, Y. , Shen, W. , Zhang, A. , Liu, H. , and Ma, Z. , 2014, “ Template-Free Hydrothermal Synthesis of Li2FeSiO4 Hollow Spheres as Cathode Materials for Lithium-Ion Batteries,” J. Mater. Chem. A, 2(32), pp. 12982–12990. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) XRD patterns of Li2NixFe1−xSiO4 samples prepared at 800 °C and (b) FTIR spectra of the as-prepared Li2FeSiO4 and Li2NiSiO4 samples

Grahic Jump Location
Fig. 2

SEM of Li2NixFe1−xSiO4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) samples prepared at 800 °C

Grahic Jump Location
Fig. 3

(a) Voltage-capacity profiles for Li/Li2NixFe1−xSiO4 batteries, Nyqiust plots of Li/Li2NixFe1−xSiO4 discharged batteries after 100 cycles at (b) x = 0 and 1, (c) x = 0.2 and 0.4, and (d) x = 0.6 and 0.8

Grahic Jump Location
Fig. 4

Relationship between real impedance with the low angular frequencies for (a) Li/Li2FeSiO4 and Li/Li2NiSiO4 batteries, (b) Li/ Li2NixFe1−xSiO4 (x = 0.2, 0.4, 0.6, and 0.8) batteries, and (c) cycle life performance of all Li/Li2NixFe1−xSiO4 batteries

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In