Special Issue Research Papers

Gas Diffusion Electrode With Large Amounts of Gas Diffusion Channel Using Hydrophobic Carbon Fiber: For Oxygen Reduction Reaction at Gas/Liquid Interfaces

[+] Author and Article Information
Shohei Tada

Department of Chemical System Engineering,
The University of Tokyo,
7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan;
Department of Materials and Life Science,
Faculty of Science and Technology,
Seikei University,
3-3-1 Kichijoji-kitamachi,
Musashino-shi, Tokyo 180-8633, Japan
e-mail: s-tada@ejs.seikei.ac.jp

Pantira Privatananupunt

Department of Chemical System Engineering,
The University of Tokyo,
7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
e-mail: myosinsama@gmail.com

Toshiyuki Iwasaki

Department of Chemical System Engineering,
The University of Tokyo,
7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
e-mail: awk104@gmail.com

Ryuji Kikuchi

Department of Chemical System Engineering,
The University of Tokyo,
7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
e-mail: rkikuchi@chemsys.t.u-tokyo.ac.jp

1Corresponding author.

Manuscript received January 27, 2017; final manuscript received April 14, 2017; published online May 2, 2017. Assoc. Editor: Dirk Henkensmeier.

J. Electrochem. En. Conv. Stor. 14(2), 020703 (May 02, 2017) (9 pages) Paper No: JEECS-17-1014; doi: 10.1115/1.4036507 History: Received January 27, 2017; Revised April 14, 2017

For a gas diffusion cathode for oxygen reduction reaction (ORR) in aqueous alkaline electrolyte, it is important to create networks for O2 gas diffusion, electronic conduction, and liquid-phase OH transport in the cathode at once. In this study, we succeeded to fabricate a promising cathode using hydrophobic vapor grown carbon fibers (VGCF-Xs), instead of hydrophobic carbon blacks (CBs), as additives to its active layer (AL). Mercury porosimetry, as well as electrochemical impedance spectroscopy, showed that porosity of the cathode gradually increased with increasing the amount of the carbon fibers. In other words, addition of larger amount of the carbon fibers creates better O2 gas diffusion channels. Also, the activation polarization resistance for the ORR increased as the carbon fibers' amount from 0 to 0.03–0.04 g and then dropped. In consequence, the cathode with 0.03 g of the carbon fibers exhibited the highest ORR performance among the prepared cathodes.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Steele, B. C. H. , and Heinzel, A. , 2001, “ Materials for Fuel-Cell Technologies,” Nature, 414(6861), pp. 345–352. [CrossRef] [PubMed]
Cheng, F. Y. , and Chen, J. , 2012, “ Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts,” Chem. Soc. Rev., 41(6), pp. 2172–2192. [CrossRef] [PubMed]
Spendelow, J. S. , and Wieckowski, A. , 2007, “ Electrocatalysis of Oxygen Reduction and Small Alcohol Oxidation in Alkaline Media,” Phys. Chem. Chem. Phys., 9(21), pp. 2654–2675. [CrossRef] [PubMed]
Christensen, P. A. , Hamnett, A. , and Linares-Moya, D. , 2011, “ Oxygen Reduction and Fuel Oxidation in Alkaline Solution,” Phys. Chem. Chem. Phys., 13(12), pp. 5206–5214. [CrossRef] [PubMed]
Jorissen, L. , 2006, “ Bifunctional Oxygen/Air Electrodes,” J. Power Sources, 155(1), pp. 23–32. [CrossRef]
Bidault, F. , Brett, D. J. L. , Middleton, P. H. , and Brandon, N. P. , 2009, “ Review of Gas Diffusion Cathodes for Alkaline Fuel Cells,” J. Power Sources, 187(1), pp. 39–48. [CrossRef]
Lima, F. H. B. , and Ticianelli, E. A. , 2004, “ Oxygen Electrocatalysis on Ultra-Thin Porous Coating Rotating Ring/Disk Platinum and Platinum-Cobalt Electrodes in Alkaline Media,” Electrochim. Acta, 49(24), pp. 4091–4099. [CrossRef]
Motoo, S. , Watanabe, M. , and Furuya, N. , 1984, “ Gas-Diffusion Electrode of High-Performance,” J. Electroanal. Chem., 160(1–2), pp. 351–357. [CrossRef]
Watanabe, M. , Tomikawa, M. , and Motoo, S. , 1985, “ Preparation of a High-Performance Gas-Diffusion Electrode,” J. Electroanal. Chem., 182(1), pp. 193–196. [CrossRef]
Watanabe, M. , Makita, K. , Usami, H. , and Motoo, S. , 1986, “ New Preparation Method of a High-Performance Gas-Diffusion Electrode Working at 100-Percent Utilization of Catalyst Clusters and Analysis of the Reaction Layer,” J. Electroanal. Chem., 197(1–2), pp. 195–208. [CrossRef]
Wang, J. J. , Yin, G. P. , Shao, Y. Y. , Zhang, S. , Wang, Z. B. , and Gao, Y. Z. , 2007, “ Effect of Carbon Black Support Corrosion on the Durability of Pt/C Catalyst,” J. Power Sources, 171(2), pp. 331–339. [CrossRef]
Hacker, V. , Wallnofer, E. , Baumgartner, W. , Schaffer, T. , Besenhard, J. O. , Schrottner, H. , and Schmied, M. , 2005, “ Carbon Nanofiber-Based Active Layers for Fuel Cell Cathodes—Preparation and Characterization,” Electrochem. Commun., 7(4), pp. 377–382. [CrossRef]
Huang, H. , Zhang, W. K. , Li, M. C. , Gan, Y. P. , Chen, J. H. , and Kuang, Y. F. , 2005, “ Carbon Nanotubes as a Secondary Support of a Catalyst Layer in a Gas Diffusion Electrode for Metal Air Batteries,” J. Colloid Interface Sci., 284(2), pp. 593–599. [CrossRef] [PubMed]
Yang, C. C. , Hsu, S. T. , Chien, W. C. , Shih, M. C. , Chiu, S. J. , Lee, K. T. , and Wang, C. L. , 2006, “ Electrochemical Properties of Air Electrodes Based on MnO2 Catalysts Supported on Binary Carbons,” Int. J. Hydrogen Energy, 31(14), pp. 2076–2087. [CrossRef]
Gendel, Y. , Roth, H. , Rommerskirchen, A. , David, O. , and Wessling, M. , 2014, “ A Microtubular All CNT Gas Diffusion Electrode,” Electrochem. Commun., 46, pp. 44–47. [CrossRef]
Wang, Y. , Jin, J. H. , Yang, S. L. , Li, G. , and Qiao, J. L. , 2015, “ Highly Active and Stable Platinum Catalyst Supported on Porous Carbon Nanofibers for Improved Performance of PEMFC,” Electrochim. Acta, 177, pp. 181–189. [CrossRef]
Li, Y. F. , Huang, Z. P. , Huang, K. , Carnahan, D. , and Xing, Y. C. , 2013, “ Hybrid Li-Air Battery Cathodes With Sparse Carbon Nanotube Arrays Directly Grown on Carbon Fiber Papers,” Energy Environ. Sci., 6(11), pp. 3339–3345. [CrossRef]
Tomantschger, K. , and Kordesch, K. V. , 1989, “ Structural-Analysis of Alkaline Fuel-Cell Electrodes and Electrode Materials,” J. Power Sources, 25(3), pp. 195–214. [CrossRef]
Shteinberg, G. V. , Dribinsky, A. V. , Kukushkina, I. A. , Mokorousov, L. N. , and Bagotzky, V. S. , 1984, “ Investigation of the Carbon Oxygen (Air) Electrode,” J. Electroanal. Chem., 180(1–2), pp. 619–637. [CrossRef]
Arico, A. S. , Srinivasan, S. , and Antonucci, V. , 2001, “ DMFCs: From Fundamental Aspects to Technology Development,” Fuel Cells, 1(2), pp. 133–161. [CrossRef]
Eom, S. W. , Lee, C. W. , Yun, M. S. , and Sun, Y. K. , 2006, “ The Roles and Electrochemical Characterizations of Activated Carbon in Zinc Air Battery Cathodes,” Electrochim. Acta, 52(4), pp. 1592–1595. [CrossRef]
Wang, Y. G. , Cheng, L. , Li, F. , Xiong, H. M. , and Xia, Y. Y. , 2007, “ High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions,” Chem. Mater., 19(8), pp. 2095–2101. [CrossRef]
Stamatin, S. N. , Borghei, M. , Dhiman, R. , Andersen, S. M. , Ruiz, V. , Kauppinen, E. , and Skou, E. M. , 2015, “ Activity and Stability Studies of Platinized Multi-Walled Carbon Nanotubes as Fuel Cell Electrocatalysts,” Appl. Catal., B, 162, pp. 289–299. [CrossRef]
Andersen, S. M. , 2016, “ Nano Carbon Supported Platinum Catalyst Interaction Behavior With Perfluorosulfonic Acid Ionomer and Their Interface Structures,” Appl. Catal., B, 181, pp. 146–155. [CrossRef]
Waki, K. , Wong, R. A. , Oktaviano, H. S. , Fujio, T. , Nagai, T. , Kimoto, K. , and Yamada, K. , 2014, “ Non-Nitrogen Doped and Non-Metal Oxygen Reduction Electrocatalysts Based on Carbon Nanotubes: Mechanism and Origin of ORR Activity,” Energy Environ. Sci., 7(6), pp. 1950–1958. [CrossRef]
Wei, W. , Tao, Y. , Lv, W. , Su, F. Y. , Ke, L. , Li, J. , Wang, D. W. , Li, B. H. , Kang, F. Y. , and Yang, Q. H. , 2014, “ Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts,” Sci. Rep., 4, p. 6289. [CrossRef] [PubMed]
Li, Y. G. , Zhou, W. , Wang, H. L. , Xie, L. M. , Liang, Y. Y. , Wei, F. , Idrobo, J. C. , Pennycook, S. J. , and Dai, H. J. , 2012, “ An Oxygen Reduction Electrocatalyst Based on Carbon Nanotube-Graphene Complexes,” Nat. Nanotechnol., 7(6), pp. 394–400. [CrossRef] [PubMed]
Jung, G. B. , Tzeng, W. J. , Jao, T. C. , Liu, Y. H. , and Yeh, C. C. , 2013, “ Investigation of Porous Carbon and Carbon Nanotube Layer for Proton Exchange Membrane Fuel Cells,” Appl. Energy, 101, pp. 457–464. [CrossRef]
Xie, Z. Y. , Chen, G. F. , Yu, X. , Hou, M. , Shao, Z. G. , Hong, S. J. , and Mu, C. , 2015, “ Carbon Nanotubes Grown In Situ on Carbon Paper as a Microporous Layer for Proton Exchange Membrane Fuel Cells,” Int. J. Hydrogen Energy, 40(29), pp. 8958–8965. [CrossRef]
Du, H. Y. , Wang, C. H. , Hsu, H. C. , Chang, S. T. , Yen, S. C. , Chen, L. C. , Viswanathan, B. , and Chen, K. H. , 2011, “ High Performance of Catalysts Supported by Directly Grown PTFE-Free Micro-Porous CNT Layer in a Proton Exchange Membrane Fuel Cell,” J. Mater. Chem., 21(8), pp. 2512–2516. [CrossRef]
Pozio, A. , De Francesco, M. , Cemmi, A. , Cardellini, F. , and Giorgi, L. , 2002, “ Comparison of High Surface Pt/C Catalysts by Cyclic Voltammetry,” J. Power Sources, 105(1), pp. 13–19. [CrossRef]
Gorzny, M. L. , Walton, A. S. , and Evans, S. D. , 2010, “ Synthesis of High-Surface-Area Platinum Nanotubes Using a Viral Template,” Adv. Funct. Mater., 20(8), pp. 1295–1300. [CrossRef]
Nishikawa, O. , Doyama, K. , Miyatake, K. , Uchida, H. , and Watanabe, M. , 2005, “ Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells Using Novel Organic/Inorganic Hybrid Electrolytes: Effect of Carbon Black Addition in the Catalyst Layer,” Electrochim. Acta, 50(13), pp. 2719–2723. [CrossRef]
Watanabe, M. , Tomikawa, M. , and Motoo, S. , 1985, “ Experimental Analysis of the Reaction Layer Structure in a Gas Diffusion Electrode,” J. Electroanal. Chem., 195(1), pp. 81–93. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic image of (a) gas diffusion electrode structure, (b) procedure for gas diffusion electrode fabrication, (c) apparatus for electrochemical measurement, (d) preparation of working electrode, and (e) apparatus for cyclic voltammetry measurement

Grahic Jump Location
Fig. 2

Equivalent circuit used in this study; Rs: ohmic resistance, R1: activation resistance, R2: diffusion resistance, and CPE: constant phase element

Grahic Jump Location
Fig. 3

Transmission electron microscopy image of Pt/CB

Grahic Jump Location
Fig. 4

Scanning electron microscopy images of AL surface of (a) CF3 and (b) CF6. Scale: (from left to right) ×30 k and ×150 k.

Grahic Jump Location
Fig. 5

Pore size distribution of several types of GDEs obtained by Hg porosimetry: (a) NC, (b) CF1, (c) CF3, (d) CF6, (e), CB6, and (f) No AL. Pressure: 0–4000 atm.

Grahic Jump Location
Fig. 6

Influence of VGCF-X or hydrophobic CB presence in AL on (a) specific volume of secondary pores and (b) porosity of AL. Detail information is in Table 2. “No AL” sample is a GDE without AL.

Grahic Jump Location
Fig. 7

I–V curves of NC, CF6, and CB6. All experiments were conducted under O2 partial pressure = 1.0 atm at 70 °C. Sweep rate: 5 mV s−1.

Grahic Jump Location
Fig. 8

Nyquist plots of (a) NC, (b) CF6, and (c) CB6. All experiments were conducted under O2 partial pressure = 1.0 atm at 70 °C.

Grahic Jump Location
Fig. 10

I–V curves of (a) NC, (b) CF1, (c) CF3, and (d) CF6. All experiments were conducted under O2 partial pressure = 1.0, 0.6, and 0.2 atm at 70 °C. Sweep rate: 5 mV s−1.

Grahic Jump Location
Fig. 11

Nyquist plots of CF6. All experiments were conducted under O2 partial pressure = (a) and (d) 1.0, (b) and (e) 0.6, and (c) 0.2 atm at 70 °C.

Grahic Jump Location
Fig. 9

I–V curves of CF1, CF3, CF4, and CF6. All experiments were conducted under O2 partial pressure = 1.0 atm at 70 °C. Sweep rate: 5 mV s−1.

Grahic Jump Location
Fig. 12

Effect of VGCF-X amount in the GDEs on (•) current density (at ΔE=−0.5 V), (◻) activation resistance, and (△) diffusion resistance. All experiments were conducted under O2 partial pressure = (a) 0.6 atm and (b) 1.0 atm at 70 °C. The raw data were summarized in Table 3.

Grahic Jump Location
Fig. 13

Cyclic voltammetry for NC, CF3, CF6, and CB6




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In