0
Research Papers

Perspectives in Solid Oxide Fuel Cell-Based Microcombined Heat and Power Systems

[+] Author and Article Information
Khaliq Ahmed

Department of Chemical Engineering,
Curtin University,
Bentley, WA 6102, Australia

Karl Föger

Xinnotec Pty. Ltd.,
Kew, Victoria 3101, Australia

Manuscript received November 27, 2016; final manuscript received May 10, 2017; published online June 21, 2017. Assoc. Editor: Robert J. Braun.

J. Electrochem. En. Conv. Stor. 14(3), 031005 (Jun 21, 2017) (12 pages) Paper No: JEECS-16-1154; doi: 10.1115/1.4036762 History: Received November 27, 2016; Revised May 10, 2017

Fuel cell technology has undergone extensive research and development in the past 20 years. Even though it has not yet made a commercial breakthrough, it is still seen as a promising enabling technology for emissions reduction. The high electrical efficiency (Powell et al., 2012, “Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation,” J. Power Sources, 205, pp. 377–384; Föger and Payne, 2014, “Ceramic Fuel Cells BlueGen—Market Introduction Experience,” 11th European SOFC & SOE Forum 2014, Lucerne, Switzerland, Paper No. A0503; and Payne et al., 2009, “Generating Electricity at 60% Electrical Efficiency From 1-2 kWe SOFC Products,” ECS Trans., 25(2), pp. 231–240) of an solid oxide fuel cell (SOFC)-based fuel cell system and the ability to operate on renewable fuels make it an ideal platform for transition from fossil-fuel dependency to a sustainable world relying on renewable energy, by reducing emissions during the transition period where fossil fuels including natural gas remain a major source of energy. Key technical hurdles to commercialization are cost, life, and reliability. Despite significant advances in all areas of the technology cost and durability targets (Papageorgopoulos, 2012, “Fuel Cells, 2012 Annual Merit Review and Peer Evaluation Meeting,” U.S. Department of Energy, Washington, DC, accessed May 14, 2012, http://www.hydrogen.energy.gov/pdfs/review12/fc_plenary_papageorgopoulos_2012_o.pdf) have not been met. The major contribution to cost comes from tailor-made balance of plant (BoP) components as SOFC-based systems cannot be optimized functionally with off-the shelf commercial items, and cost targets for BoP and stack cannot be met without volume manufacturing (Föger, 2008, “Materials Basics for Fuel Cells,” Materials for Fuel Cells, M. Gasik ed., Woodhead Publishing, Cambridge, UK, pp. 6–63). Reliability issues range from stack degradation and mechanical failure and BoP component failure to grid-interface issues in a grid-connected distributed generation system. Resolving some of these issues are a key to the commercial viability of SOFC-based microcombined heat and power (CHP) systems. This paper highlights some of the technical and practical challenges facing developers of SOFC-based products.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Powell, M. , Meinhardt, K. , Sprenkle, V. , Chick, L. , and McVay, G. , 2012, “ Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation,” J. Power Sources, 205, pp. 377–384. [CrossRef]
Föger, K. , 2008, “ Materials Basics for Fuel Cells,” Materials for Fuel Cells, M. Gasik ed., Woodhead Publishing, Cambridge, UK, pp. 6–63.
CFCL, 2014, “ Ceramic Fuel Cells Limited Technology Update: Substantial Reduction of Stack Degradation Rates Achieved,” Ceramic Fuel Cells Ltd., Melbourne, Australia, accessed June 30, 2014, http://www.asx.com.au/asxpdf/20140630/pdf/42qj2zq90rbhxt.pdf
Föger, K. , 2009, “ Ceramic Fuel Cells Ltd.: Ultra High Efficiency Residential Power Systems,” Third European Fuel Cell Technology and Applications Conference (EFC), Rome, Italy, Dec. 15–18, pp. 41–42. http://www.fuelcellmarkets.com/content/images/articles/20091221_Ceramic_Fuel_Cells_Ltd_Piero_Lunghi_Conference_Rome_Dec09.pdf
Papageorgopoulos, D. , 2012, “ Fuel Cells, 2012 Annual Merit Review and Peer Evaluation Meeting,” U.S. Department of Energy, Washington, DC, accessed May 14, 2012, http://www.hydrogen.energy.gov/pdfs/review12/fc_plenary_papageorgopoulos_2012_o.pdf
Sasaki, K. , Haga, K. , Yoshizumi, T. , Minematsu, D. , Yuki, E. , Liu, R. , Uryu, C. , Oshima, T. , Ogura, T. , Shiratori, Y. , Ito, K. , Koyama, M. , and Yokomoto, K. , 2011, “ Chemical Durability of Solid Oxide Fuel Cells: Influence of Impurities on Long-Term Performance,” J. Power Sources, 196(22), pp. 9130–9140. [CrossRef]
Khan, M. S. , Lee, S.-B. , Song, R.-H. , Lee, J.-W. , Lim, T.-H. , and Park, S.-J. , 2016, “ Fundamental Mechanisms Involved in the Degradation of Nickel–Yttria Stabilized Zirconia (Ni–YSZ) Anode During Solid Oxide Fuel Cells Operation: A Review,” Ceram. Int., 42(1), pp. 35–48. [CrossRef]
Brus, G. , Iwai, H. , Sciazko, A. , Saito, M. , Yoshida, H. , and Szmyd, J. S. , 2015, “ Local Evolution of Anode Microstructure Morphology in a Solid Oxide Fuel Cell After Long-Term Stack Operation,” J. Power Sources, 288, pp. 199–205. [CrossRef]
Brus, G. , Miyoshi, K. , Iwai, H. , Saito, M. , and Yoshida, H. , 2015, “ Change of an Anode's Microstructure Morphology During the Fuel Starvation of an Anode-Supported Solid Oxide Fuel Cell,” Int. J. Hydrogen Energy, 40(21), pp. 6927–6934. [CrossRef]
Papurello, D. , Lanzini, A. , Fiorilli, S. , Smeacetto, F. , Singh, R. , and Santarelli, M. , 2016, “ Sulfur Poisoning in Ni-Anode Solid Oxide Fuel Cells (SOFCs): Deactivation in Single Cells and a Stack,” Chem. Eng. J., 283, pp. 1224–1233. [CrossRef]
Schuler, J. A. , Gehrig, C. , Wuillemin, Z. , Schuler, A. J. , Wochele, J. , Ludwig, C. , Hessler-Wyser, A. , and Van Herle, J. , 2011, “ Air Side Contamination in Solid Oxide Fuel Cell Stack Testing,” J. Power Sources, 196(17), pp. 7225–7231. [CrossRef]
Schuler, J. A. , Yokokawa, H. , Calderone, C. F. , Jeangros, Q. , Wuillemin, Z. , Hessler-Wyser, A. , and Van Herle, J. , 2012, “ Combined Cr and S Poisoning in Solid Oxide Fuel Cell Cathodes,” J. Power Sources, 201, pp. 112–120. [CrossRef]
Wang, F. , Yamaji, K. , Cho, D.-H. , Shimonosono, T. , Kishimoto, H. , Brito, M. E. , Horita, T. , and Yokokawa, H. , 2012, “ Effect of Strontium Concentration on Sulfur Poisoning of LSCF Cathodes,” Solid State Ionics, 225, pp. 157–160. [CrossRef]
Bucher, E. , Gspan, C. , Hofer, F. , and Sitte, W. , 2013, “ Sulphur Poisoning of the SOFC Cathode Material La0.6Sr0.4CoO3-δ,” Solid State Ionics, 238, pp. 15–23. [CrossRef]
Bucher, E. , Gspan, C. , and Sitte, W. , 2015, “ Degradation and Regeneration of the SOFC Cathode Material La0.6Sr0.4CoO3-δ in SO2-Containing Atmospheres,” Solid State Ionics, 272, pp. 112–120. [CrossRef]
Xie, J. , Jub, Y.-W. , and Ishihara, T. , 2013, “ Influence of Sulfur Impurities on the Stability of La0.6Sr0.4Co0.2Fe0.8O3 Cathode for Solid Oxide Fuel Cells,” Solid State Ionics, 249–250, pp. 177–183. [CrossRef]
Park, E. , Taniguchi, S. , Daio, T. , Chou, J.-T. , and Sasaki, K. , 2014, “ Influence of Cathode Polarization on the Chromium Deposition Near the Cathode/Electrolyte Interface of SOFC,” Int. J. Hydrogen Energy, 39(3), pp. 1463–1475. [CrossRef]
Blum, L. , Batfalsky, P. , Fang, Q. , de Haart, L. G. J. , Malzbender, J. , Margaritis, N. , Menzler, N. H. , and Peters, Ro. , 2015, “ SOFC Stack and System Development at Forschungszentrum Jülich,” J. Electrochem. Soc., 162(10), pp. F1199–F1205. [CrossRef]
Nakajo, A. , Mueller, F. , Brouwer, J. , Van Herle, J. , and Favrat, D. , 2012, “ Mechanical Reliability and Durability of SOFC Stacks—Part I: Modelling of the Effect of Operating Conditions and Design Alternatives on the Reliability,” Int. J. Hydrogen Energy, 37(11), pp. 9249–9268. [CrossRef]
Nakajo, A. , Mueller, F. , Brouwer, J. , Van Herle, J. , and Favrat, D. , 2012, “ Mechanical Reliability and Durability of SOFC Stacks—Part II: Modelling of Mechanical Failures During Ageing and Cycling,” Int. J. Hydrogen Energy, 37(11), pp. 9269–9286. [CrossRef]
Hagen, A. , Hendriksen, P. V. , Frandsen, H. L. , Thydén, K. , and Barford, R. , 2009, “ Durability Study of SOFCs Under Cycling Current Load Conditions,” Fuel Cells, 9(6), pp. 814–822. [CrossRef]
Dikwal, C. , Bujalski, W. , and Kendall, K. , 2009, “ The Effect of Temperature Gradients on Thermal Cycling and Isothermal Ageing of Microtubular Solid Oxide Fuel Cells,” J. Power Sources, 193(1), pp. 241–248. [CrossRef]
Föger, K. , and Payne, R. , 2014, “ Ceramic Fuel Cells BlueGen—Market Introduction Experience,” 11th European SOFC & SOE Forum, Lucerne, Switzerland, July 4–7, Paper No. A0503.
Payne, R. , Love, J. , and Kah, M. , 2009, “ Generating Electricity at 60% Electrical Efficiency From 1-2 kWe SOFC Products,” ECS Trans., 25(2), pp. 231–239.
Love, J. , Amarasinghe, S. , Selvey, D. , Zheng, X. , and Christiansen, L. , 2009, “ Development of SOFC Stacks at Ceramic Fuel Cells Limited,” ECS Trans., 25(2), pp. 115–124.
Badwal, S. P. S. , Deller, R. , Föger, K. , Ramprakash, Y. , and Zhang, J. P. , 1997, “ Interaction Between Chromia Forming Alloy Interconnects and Air Electrode of SOFCs,” Solid State Ionics, 99, pp. 297–310. [CrossRef]
Badwal, S. P. S. , Föger, K. , Zheng, X. G. , and Jaffrey, D. , 1999, “ Fuel Cell Interconnect Device,” U.S. Patent No. US5942349 A https://www.google.tl/patents/US5942349.
Schuler, J. A. , 2012, “ Chromium Poisoning: the Needle in the SOFC Stack,” Ph.D. thesis, EPFL, Lausanne, Switzerland. https://infoscience.epfl.ch/record/180625
Wang, C. , O'Donnell, K. , Jian, L. , and Jiang, S. , 2015, “ Co-Deposition and Poisoning of Chromium and Sulfur Contaminants on La0.6Sr0.4Co0.2Fe0.8O3-d Cathodes of Solid Oxide Fuel Cells,” J. Electrochem. Soc., 162(6), pp. F507–F512. [CrossRef]
Wang, C. C. , Chen, K. , and Jiang, S. , 2014, “ Sulfur Deposition and Poisoning of La0.6Sr0.4Co0.2Fe0.8O3-d Cathode Materials of Solid Oxide Fuel Cells,” J. Electrochem. Soc., 161(12), pp. F1133–F1139. [CrossRef]
Zhao, L. , Cheng, Y. , and Jiang, S. , 2015, “ A New, High Electrochemical Activity and Chromium Tolerant Cathode for Solid Oxide Fuel Cells,” Int. J. Hydrogen Energy, 40(45), pp. 15622–15631. [CrossRef]
Chen, K. , Ai, N. , O'Donnell, K. M. , and Jiang, S. P. , 2015, “ Highly Chromium Contaminant Tolerant BaO Infiltrated La0.6Sr0.4Co0.2Fe0.8O3δ,” Phys. Chem. Chem. Phys., 17(7), pp. 4870–4874. [CrossRef] [PubMed]
Chen, K. , Fang, L. , Zhang, T. , and Jiang, S. , 2014, “ New Zinc and Bismuth Doped Glass Sealants With Substantially Suppressed Boron Deposition and Poisoning for Solid Oxide Fuel Cells,” J. Mater. Chem. A, 2(43), pp. 18655–18665. [CrossRef]
Bucher, E. , Gspan, C. , Hofer, F. , and Sitte, W. , 2011, “ Post-Test Analysis of Silicon Poisoning and Phase Decomposition in the SOFC Cathode Material La0.5Sr0.4Co0.2Fe0.8O3-δ by Transmission Electron Microscopy,” Solid State Ionics, 230, pp. 7–11. [CrossRef]
Bucher, E. , Sitte, W. , Klauser, F. , and Bertel, E. , 2012, “ Impact of Humid Atmospheres on Oxygen Exchange Properties, Surface-Near Elemental Composition, and Surface Morphology of La0.6Sr0.4CoO3−δ,” Solid State Ionics, 208, pp. 43–51. [CrossRef]
Bucher, E. , Sitte, W. , Klauser, F. , and Bertel, E. , 2011, “ Oxygen Exchange Kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600 °C in Dry and Humid Atmospheres,” Solid State Ionics, 191(1), pp. 61–67. [CrossRef]
Schrödla, N. , Buchera, E. , Eggera, A. , Kreimlb, P. , Teichertb, C. , Hoeschenc, T. , and Sitte, W. , 2015, “ Long-Term Stability of the IT-SOFC Cathode Materials La0.6Sr0.4CoO3-δ and La2NiO4+δ Against Combined Chromium and Silicon Poisoning,” Solid State Ionics, 276, pp. 62–71. [CrossRef]
Zhang, X. G. , Aruliah, S. K. , Amarasinghe, S. , and Kah, M. , 2015, “ Electrochemical Energy Conversion Devices and Cells, and Positive Electrode-Side Materials for Them,” Patent No. WO2015103673 A1. http://www.google.ch/patents/WO2015103673A1?hl=de&cl=en
Ahmed, K. , and Föger, K. , 2010, “ Fuel Processing for High Temperature High Efficiency Fuel Cells,” Ind. Eng. Chem. Res., 49(7), pp. 7239–7256. [CrossRef]
Li, M. , Hua, B. , Luo, J. , Jiang, S. , Pu, J. , Chi, B. , and Li, J. , 2016, “ Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration,” ACS Appl. Mater. Interfaces, 8(16), pp. 10293–10301. [CrossRef] [PubMed]
Haga, K. , Adachi, S. , Shiratori, Y. , Itoh, K. , and Sasaki, K. , 2008, “ Poisoning of SOFC Anodes by Various Fuel Impurities,” Solid State Ionics, 179(27–32), pp. 1427–1431. [CrossRef]
Madi, H. , Lanzini, A. , Diethelm, S. , Papurello, D. , Van Herle, J. , Lualdi, M. , Larsen, J. G. , and Santarelli, M. , 2015, “ Solid Oxide Fuel Cell Anode Degradation by the Effect of Siloxanes,” J. Power Sources, 279, pp. 460–471. [CrossRef]
Hauch, A. , Ebbesen, S. D. , Jensen, S. H. , and Mogensen, M. , 2008, “ Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode,” J. Electrochem. Soc., 155(11), pp. B1184–B1193. [CrossRef]
Sasaki, K. , Yoshizumi, K. T. , Haga, K. , Yoshitomi, H. , Hosoi, T. , Shiratori, Y. , and Taniguchi, S. , 2013, “ Chemical Degradation of SOFCs: External Impurity Poisoning and Internal Diffusion-Related Phenomena,” ECS Trans., 57(1), pp. 315–323. [CrossRef]
Twigg, M. W. , 1996, Catalyst Handbook, 2nd ed., Manson Publishing, London.
Rostrup-Nielsen, J. R. , 1984, Catalytic Steam Reforming, Catalysis Science & Technology, Vol. 5, Springer-Verlag, New York.
Bhattacharyya, D. , and Rengaswamy, R. , 2009, “ A Review of Solid Oxide Fuel Cell (SOFC) Dynamic Models,” Ind. Eng. Chem. Res., 48(13), pp. 6068–6086. [CrossRef]
Charpentier, J. C. , 2009, “ Perspective on Multiscale Methodology for Product Design and Engineering,” Comput. Chem. Eng., 33(5), pp. 936–946. [CrossRef]
Rautanen, M. , Pulkkinen, V. , Tallgren, J. , Himanen, O. , and Kiviaho, J. , 2015, “ Effect of the First Heat up Procedure on Mechanical Properties of Solid Oxide Fuel Cell Sealing Materials,” J. Power Sources, 284, pp. 511–516. [CrossRef]
Dev, B. , Walter, M. E. , Arkenberg, G. , and Schwarz, S. , 2014, “ Mechanical and Thermal Characterization of Ceramic/Glass Composite Seals for Solid Oxide Fuel Cells,” J. Power Sources, 245, pp. 958–966. [CrossRef]
Dev, B. , and Walter, M. E. , 2015, “ Comparative Study of the Leak Characteristics of Two Ceramic/Glass Composite Seals for Solid Oxide Fuel Cells,” Fuel Cells, 15(1), pp. 115–130. [CrossRef]
Mahapatra, M. K. , and Lu, K. , 2010, “ Seal Glass for Solid Oxide Fuel Cells,” J. Power Sources, 195(21), pp. 7129–7139. [CrossRef]
Rautanen, M. , Himanen, O. , Saarinen, V. , and Kiviaho, J. , 2009, “ Compression Properties and Leakage Tests of Mica-Based Seals for SOFC Stacks,” Fuel Cells, 9(5), pp. 753–759. [CrossRef]
Chang, H. T. , Lin, C. K. , and Liu, C. K. , 2009, “ High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” J. Power Sources, 189(2), pp. 1093–1099. [CrossRef]
Chang, H. T. , Lin, C. K. , and Liu, C. K. , 2010, “ Effect of Crystallization on the High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cells,” J. Power Sources, 195(10), pp. 3159–3165. [CrossRef]
Lahl, N. , Bahadur, D. , Singh, K. , Singheiser, L. , and Hilpert, K. , 2002, “ Chemical Interactions Between Aluminosilicate Base Sealants and the Components on the Anode Side of Solid Oxide Fuel Cells,” J. Electrochem. Soc., 149(5), pp. A607–A614. [CrossRef]
Tong, J. , Hah, M. , Singhal, S. C. , and Gong, Y. , 2012, “ Influence of Al2O3 Addition on the Properties of BiO2-BaO-SiO2-RxOy (R = K, Zn, etc.) Glass Sealant,” J. Non-Cryst. Solids, 358(6–7), pp. 1038–1043. [CrossRef]
Liu, W. N. , Sun, X. , and Khaleel, M. A. , 2011, “ Study of Geometric Stability and Structural Integrity of Self-Healing Glass System Used in Solid Oxide Fuel Cells,” J. Power Sources, 196(4), pp. 1750–1761. [CrossRef]
Stephens, E. , Veltrano, J. , Koeppel, B. , Chou, Y. , Sun, X. , and Khaleel, M. , 2009, “ Experimental Characterization of Glass-Ceramic Seal Properties and Their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” J. Power Sources, 193(2), pp. 625–631. [CrossRef]
Meinhardt, K. D. , Kim, D. S. , Chou, Y. S. , and Weil, K. S. , 2008, “ Synthesis and Properties of a Barium Aluminosilicate Solid Oxide Fuel Cell Glass Ceramic Sealant,” J. Power Sources, 182(1), pp. 188–196. [CrossRef]
Harun, N. F. , Tucker, D. , and Adams, T. A. , 2016, “ Impact of Fuel Composition Transients on SOFC Performance in Gas Turbine Hybrid Systems,” Appl. Energy, 164, pp. 446–461. [CrossRef]
Hiskens, I. A. , and Flemming, E. M. , 2008, “ Control of Inverter-Connected Sources in Autonomous Microgrids,” American Control Conference (ACC), Seattle, WA, June 11–13, pp. 586–590.
Singh, B. K. , Gaonkar, D. N. , Aithal, R. S. , and Sharma, G. , 2011, “ Modeling and Performance Analysis of Solid Oxide Fuel Cell Based Distributed Generation System,” Int. Energy J., 12, pp. 123–134. http://www.rericjournal.ait.ac.th/index.php/reric/article/viewFile/902/398
Zhang, L. , Jiang, J. , Cheng, H. , Deng, Z. , and Li, X. , 2015, “ Control Strategy for Power Management, Efficiency-Optimization and Operating-Safety of a 5-kW Solid Oxide Fuel Cell System,” Electrochim. Acta, 177, pp. 237–249. [CrossRef]
Shearing, P. R. , Brett, D. J. L. , and Brandon, N. P. , 2010, “ Towards Intelligent Engineering of SOFC Electrodes: A Review of Advanced Microstructural Characterisation Techniques,” Int. Mater. Rev., 55(6), pp. 347–363. [CrossRef]
Fennema, E. , 2013, “ Kiwa Gastec Report No. GT-130016 to GasTerra B.V,” Kiwa Technology B.V, Apeldoorn, The Netherlands.
CFCL, 2015, “ Technology Update: Efficiency Maintained Over Extreme Operating Range,” Ceramic Fuel Cells Ltd., Melbourne, Australia, accessed Feb. 11, 2015, http://www.asx.com.au/asxpdf/20150211/pdf/42wjlfgbj404ls.pdf
Hajimolana, S. A. , Hussain, M. A. , Daud, W. M. A. W. , Soroush, M. , and Shamiri, A. , 2011, “ Mathematical Modelling of Solid Oxide Fuel Cells: A Review,” Renewable Sustainable Energy Rev., 15(4), pp. 1893–1917. [CrossRef]
Barelli, L. , Bidini, G. , Gallorini, F. , and Ottaviano, P. A. , 2013, “ Design Optimization of a SOFC-Based CHP System Through Dynamic Analysis,” Int. J. Hydrogen Energy, 38(1), pp. 354–369. [CrossRef]
Zhang, L. , Li, X. , Jiang, J. , Li, S. , Yang, J. , and Li, J. , 2015, “ Dynamic Modelling and Analysis of a 5-kW Solid Oxide Fuel Cell System From the Perspectives of Cooperative Control of Thermal Safety and High Efficiency,” Int. J. Hydrogen Energy, 40(1), pp. 456–476. [CrossRef]
Greco, A. , Sorce, A. , Littwin, R. , Costamagna, P. , and Magistri, L. , 2014, “ Reformer Faults in SOFC Systems: Experimental and Modeling Analysis, and Simulated Fault Maps,” Int. J. Hydrogen Energy, 39(36), pp. 21700–21713. [CrossRef]
Xie, Y. , and Xue, X. , 2012, “ Multi-Scale Electrochemical Reaction Anode Model for Solid Oxide Fuel Cells,” J. Power Sources, 209, pp. 81–89. [CrossRef]
Andersson, M. , Yuan, J. , and Sundén, B. , 2010, “ Review on Modeling Development for Multiscale Chemical Reactions Coupled Transport Phenomena in Solid Oxide Fuel Cells,” Appl. Energy, 87(5), pp. 1461–1476. [CrossRef]
Yuan, K. , Ji, Y. , and Chung, J. N. , 2009, “ Physics-Based Modeling of a Low-Temperature Solid Oxide Fuel Cell With Consideration of Microstructure and Interfacial Effects,” J. Power Sources, 194(2), pp. 908–919. [CrossRef]
Lynch, M. E. , Ding, D. , Harris, W. M. , Lombardo, J. J. , Nelson, G. J. , Chiu, W. K. S. , and Liu, M. , 2013, “ Flexible Multiphysics Simulation of Porous Electrodes: Conformal to 3D Reconstructed Microstructures,” Nano Energy, 2(1), pp. 105–115. [CrossRef]
Amiri, A. , Vijay, P. , Tadé, M. O. , Ahmed, K. , Ingram, G. D. , Pareek, V. , and Utikar, R. , 2015, “ Solid Oxide Fuel Cell Reactor Analysis and Optimisation Through a Novel Multiscale Modelling Strategy,” Comput. Chem. Eng., 78, pp. 10–23. [CrossRef]
Yuan, W. K. , 2007, “ Targeting the Dominating-Scale Structure of a Multiscale Complex System: A Methodological Problem,” Chem. Eng. Sci., 62(13), pp. 3335–3345. [CrossRef]
Wei, J. , 2007, “ Coordination of Multi-Scales in Chemical Engineering,” Chem. Eng. Sci., 62(13), pp. 3326–3334. [CrossRef]
Zakrzewska, B. , Pianko-Oprych, P. , and Jaworski, Z. , 2014, “ Multiscale Modeling of Solid Oxide Fuel Cell Systems,” Chem. Ing. Tech., 86(7), pp. 1029–1043. [CrossRef]
Pohjoranta, A. , Halinen, M. , Pennanen, J. , and Kiviaho, J. , 2014, “ Multivariable Linear Regression for SOFC Stack Temperature Estimation Under Degradation Effects,” J. Electrochem. Soc., 161(4), pp. F425–F433. [CrossRef]
Cimenti, M. , and Hill, J. M. , 2009, “ Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes,” Energies, 2(2), pp. 377–410. [CrossRef]
Chen, F. , Zha, S. , Dong, J. , and Liu, M. , 2004, “ Pre-reforming of Propane for Low-Temperature SOFCs,” Solid State Ionics, 166(3–4), pp. 269–273. [CrossRef]
Ahmed, K. , Gamman, J. , and Föger, K. , 2002, “ Demonstration of LPG-Fueled Solid Oxide Fuel Cell Systems,” Solid State Ionics, 152–153, pp. 485–492. [CrossRef]
Kim, Y. , Hong, S. , Nam, S. , Seo, S. , Yoo, Y. , and Lee, S. , 2011, “ Development of 1 kW SOFC Power Package for Dual-Fuel Operation,” Int. J. Hydrogen Energy, 36(16), pp. 10247–10254. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

CFCL's 2 × 2 array stack and hot module Gennex

Grahic Jump Location
Fig. 2

CFCL's six-layer anode supported cell

Grahic Jump Location
Fig. 1

Performance of CFCL's BlueGen units [3] (the upper and lower bounds indicate the highest and lowest achieved over a number of operating units) and a Bluegen with improved stack degradation

Grahic Jump Location
Fig. 5

System flowsheet [4]

Grahic Jump Location
Fig. 8

Three-dimensional plot of the electrical efficiency versus power development in time for a BlueGen unit modulating between 0.5 kW and 1.5 kW [66]

Grahic Jump Location
Fig. 9

Time development of the electrical efficiency at maximum exported power for BlueGen14 [66] (see color figure online)

Grahic Jump Location
Fig. 10

Three-dimensional plot of the electrical efficiency versus power development in time for modulation between 0.5 kW and 2.0 kW [66]

Grahic Jump Location
Fig. 6

A 24 h modulation overview of BlueGen 14. The blue line represents the exported power; the green line represents the electrical efficiency [66] (see color figure online).

Grahic Jump Location
Fig. 11

Time development of the electrical efficiency at maximum exported power for BlueGen15 [66]

Grahic Jump Location
Fig. 12

Effect of degradation on power modulation profile [66]

Grahic Jump Location
Fig. 13

Efficiency versus export power [67]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In