0
Research Papers

Study on Nonlinear Identification SOFC Temperature Model Based on Particle Swarm Optimization–Least-Squares Support Vector Regression

[+] Author and Article Information
Jinwei Chen

Gas Turbine Research Institute,
Shanghai Jiao Tong University,
Shanghai 200240, China
e-mail: chenjinweituihou@sjtu.edu.cn

Huisheng Zhang

Gas Turbine Research Institute,
Shanghai Jiao Tong University,
Shanghai 200240, China
e-mail: zhslm@sjtu.edu.cn

Shilie Weng

Gas Turbine Research Institute,
Shanghai Jiao Tong University,
Shanghai 200240, China
e-mail: slweng@sjtu.edu.cn

1Corresponding author.

Manuscript received September 23, 2016; final manuscript received May 16, 2017; published online June 21, 2017. Assoc. Editor: Robert J. Braun.

J. Electrochem. En. Conv. Stor. 14(3), 031003 (Jun 21, 2017) (10 pages) Paper No: JEECS-16-1130; doi: 10.1115/1.4036805 History: Received September 23, 2016; Revised May 16, 2017

In order to facilitate valid solid oxide fuel cell (SOFC) temperature control scheme, a nonlinear identification method of SOFC temperature dynamic behaviors is proposed using an autoregressive network with exogenous inputs (NARX) model, whose nonlinear function is described by a least-squares support vector regression (LSSVR) method with radial basis kernel function (RBF). During the identifying process, a particle swarm optimization (PSO) algorithm is introduced to optimize the parameters of LSSVR. On the other hand, a mechanism model is developed to sample the training data to regress the NARX model. Investigations are conducted to analyze the effects of training data size and PSO fitness function on the accuracy of the NARX model. The results demonstrate that the NARX model with tenfold cross-validation fitness function and large size data is precise enough in predicting the SOFC temperature dynamic behaviors. The maximum errors of cathode and anode outlet temperature are 0.3081 K and 0.3293 K, respectively. Furthermore, the simulation speed of NARX model is much faster than the mechanism model because NARX model avoids the internal complex computation process. The training time of the NARX model with large size data is about 1.2 s. For a 20,000 s simulation, the predicting time of the NARX model is about 0.2 s, while the mechanism model is about 36 s. In consideration of its high computational speed and accuracy, NARX model is a powerful candidate for valid multivariable model predictive control (MPC) schemes.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

EIA, 2013, “ International Energy Outlook 2013,” United States Department of Energy, Washington, DC, Report No. DOE/EIA-0484. https://www.eia.gov/outlooks/ieo/pdf/0484(2013).pdf
Asif, M. , and Muneer, T. , 2007, “ Energy Supply, Its Demand and Security Issues for Developed and Emerging Economies,” Renewable Sustainable Energy Rev., 11(7), pp. 1388–1413. [CrossRef]
Hosseini, M. , Dincer, I. , Ahmadi, P. , Avvall, H. B. , and Ziaasharhagh, M. , 2013, “ Thermodynamic Modelling of an Integrated Solid Oxide Fuel Cell and Micro Gas Turbine System for Desalination Purposes,” Int. J. Energy Res., 37(5), pp. 426–434. [CrossRef]
Tsai, A. , Tucker, D. , and Emami, T. , 2014, “ Adaptive Control of a Nonlinear Fuel Cell-Gas Turbine Balance of Plant Simulation Facility,” ASME J. Fuel Cell Sci. Technol., 11(6), p. 061002. [CrossRef]
McLarty, D. , Kuniba, Y. , Brouwer, J. , and Samuelsen, S. , 2012, “ Experimental and Theoretical Evidence for Control Requirements in Solid Oxide Fuel Cell Gas Turbine Hybrid Systems,” J. Power Sources, 209, pp. 195–203. [CrossRef]
Ferrari, M. L. , 2011, “ Solid Oxide Fuel Cell Hybrid System: Control Strategy for Stand-Alone Configurations,” J. Power Sources, 196(5), pp. 2682–2690. [CrossRef]
Larosa, L. , Traverso, A. , and Zaccaria, V. , 2015, “ Ambient Temperature Impact on Pressurized SOFC Hybrid Systems,” ASME Paper No. GT2015-42364.
Stiller, C. , Thorud, B. , Bolland, O. , Kandepu, R. , and Imsland, L. , 2006, “ Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System,” J. Power Sources, 158(1), pp. 303–315. [CrossRef]
Cai, Y. , Zhu, D. , Li, X. , Ma, T. , Deng, Z. , and Li, X. , 2011, “ Application of Cascade Control in Solid Oxide Fuel Cell Thermal Management System,” J. Chem. Eng. Technol., 1, pp. 22–28 (in Chinese).
Wu, X. , Zhu, X. , Cao, G. , and Tu, H. , 2008, “ SOFC Temperature Evaluation Based on an Adaptive Fuzzy Controller,” J. Zhejiang Univ. Sci. A, 9(5), pp. 688–694. [CrossRef]
Hajimolana, S. A. , Tonekabonimoghadam, S. M. , Hussain, M. A. , Chakrabarti, M. H. , Jayakumar, N. S. , and Hashim, M. A. , 2013, “ Thermal Stress Management of a Solid Oxide Fuel Cell Using Neural Network Predictive Control,” Energy, 62, pp. 320–329. [CrossRef]
Wu, X. , Zhu, X. , Cao, G. , and Tu, H. , 2008, “ Predictive Control of SOFC Based on a GA-RBF Neural Network Model,” J. Power Sources, 179(1), pp. 232–239. [CrossRef]
So-Ryeok, O. , Jing, S. , Herb, D. , and Joel, K. , 2013, “ Dynamic Characteristics and Fast Load Following of 5-kW Class Tubular Solid Oxide Fuel Cell/Micro-Gas Turbine Hybrid Systems,” Int. J. Energy Res., 37(10), pp. 1242–1255. [CrossRef]
Zhang, H. , Weng, S. , Su, M. , and Zhang, W. , 2010, “ Control Performance Study on the Molten Carbonate Fuel Cell Hybrid Systems,” ASME J. Fuel Cell Sci. Technol., 7(6), p. 061006. [CrossRef]
Zhang, X. , Li, J. , Li, G. , and Feng, Z. , 2006, “ Dynamic Modeling of a Hybrid System of the Solid Oxide Fuel Cell and Recuperative Gas Turbine,” J. Power Sources, 163(1), pp. 523–531. [CrossRef]
Huo, H. , Zhong, Z. , Zhu, X. , and Tu, H. , 2008, “ Nonlinear Dynamic Modeling for a SOFC Stack by Using a Hammerstein Model,” J. Power Sources, 175(1), pp. 441–446. [CrossRef]
Jurado, F. , 2004, “ Modeling SOFC Plants on the Distribution System Using Identification Algorithms,” J. Power Sources, 129(2), pp. 205–215. [CrossRef]
Spivey, B. J. , and Edgar, T. F. , 2012, “ Dynamic Modeling, Simulation, and MIMO Predictive Control of a Tubular Solid Oxide Fuel Cell,” J. Process Control, 22(8), pp. 1502–1520. [CrossRef]
Colclasure, A. M. , Sanandaji, B. M. , Vincent, T. L. , and Kee, R. J. , 2011, “ Modeling and Control of Tubular Solid-Oxide Fuel Cell Systems—I: Physical Models and Linear Model Reduction,” J. Power Sources, 196(1), pp. 196–207. [CrossRef]
Sanandaji, B. M. , Vincent, T. L. , Colclasure, A. M. , and Kee, R. J. , 2011, “ Modeling and Control of Tubular Solid-Oxide Fuel Cell Systems—II: Nonlinear Model Reduction and Model Predictive Control,” J. Power Sources, 196(1), pp. 208–217. [CrossRef]
Palsson, J. , and Selimovic, A. , 2001, “ Design and Off-Design Predictions of a Combined SOFC and Gas Turbine System,” ASME Paper No. 2001-GT-0379.
Ferrari, M. L. , Pascenti, M. , and Massardo, A. F. , 2008, “ Ejector Model for High Temperature Fuel Cell Hybrid Systems: Experimental Validation at Steady-State and Dynamic Conditions,” ASME J. Fuel Cell Sci. Technol., 5(4), p. 041005. [CrossRef]
Larosa, L. , Ferrari, M. L. , Magistri, L. , and Massardo, A. , 2013, “ SOFC/MGT Coupling: Different Options With Standard Boosters,” ASME Paper No. GT2013-94072.
Zhang, W. , 2012, “ The Simulation of the Novel Hybrid System of Solid Oxide Fuel Cell and Gas Turbine,” Master thesis, Shanghai Jiao Tong University, Shanghai, China.
Zhou, D. , Mei, J. , Chen, J. , Zhang, H. , and Weng, S. , 2014, “ Parametric Analysis on Hybrid System of Solid Oxide Fuel Cell and Micro Gas Turbine With CO2 Capture,” ASME J. Fuel Cell Sci. Technol., 11(5), p. 051001. [CrossRef]
Agnew, G. D. , Townsend, J. , Moritz, R. R. , Bozzolo, M. , Berenyi, S. , and Duge, R. , 2004, “ Progress in the Development of a Low Cost 1 MW SOFC Hybrid,” ASME Paper No. GT2004-53350.
Wang, L. , Zhang, H. , and Weng, S. , 2008, “ Modeling and Simulation of Solid Oxide Fuel Cell Based on the Volume–Resistance Characteristic Modeling Technique,” J. Power Sources, 177(2), pp. 579–589. [CrossRef]
Aguiar, P. , Adjiman, C. S. , and Brandon, N. P. , 2004, “ Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell—I: Model-Based Steady-State Performance,” J. Power Sources, 138(1), pp. 120–136. [CrossRef]
Xi, H. , 2007, “ Dynamic Modeling and Control of Planar SOFC Power Systems,” Ph.D. thesis, University of Michigan, Ann Arbor, MI. http://hdl.handle.net/2027.42/126593
Wang, C. , and Nehrir, H. M. , 2007, “ A Physically Based Dynamic Model for Solid Oxide Fuel Cells,” IEEE Trans. Energy Convers., 22(4), pp. 887–897. [CrossRef]
Zhang, H. , Weng, S. , and Su, M. , 2005, “ Dynamic Modeling and Simulation of Distributed Parameter Heat Exchanger,” ASME Paper No. GT2005-68293.
Xu, J. , and Froment, G. F. , 1989, “ Methane Steam Reforming, Methanation and Water-Gas Shift—I: Intrinsic Kinetics,” AIChE J., 35(1), pp. 88–96. [CrossRef]
Asgari, H. , Chen, X. , Sainudiin, R. , Morini, M. , Pinelli, M. , Spina, P. R. , and Venturini, M. , 2014, “ Modeling and Simulation of the Start-Up Operation of a Heavy-Duty Gas Turbine by Using NARX Models,” ASME Paper No. GT2014-25056.
Liu, B. , Shen, Q. , Su, H. , and Chu, J. , 2003, “ A Nonlinear Predictive Control Algorithm Based on Fuzzy Online Modeling and Discrete Optimization,” IEEE International Conference on Systems, Man and Cybernetics (ICSMC), Washington, DC, Oct. 5–8, Vol. 1, pp. 816–821.
Vapnik, V. , 1995, The Nature of Statistical Learning Theory, Springer, New York.
Smola, A. J. , and Schölkopf, B. , 2004, “ A Tutorial on Support Vector Regression,” Stat. Comput., 14(3), pp. 199–222. [CrossRef]
Suykens, J. A. K. , and Vandewalle, J. , 1999, “ Least Squares Support Vector Machine Classifiers,” Neural Process. Lett., 9(3), pp. 293–300. [CrossRef]
Ma, N. , Xu, W. , Wang, X. , Wei, Z. , and Pang, G. , 2011, “ Prediction Method for Surface Finishing of Spiral Bevel Gear Tooth Based on Least Square Support Vector Machine,” J. Cent. South Univ. Technol., 18(3), pp. 685–689. [CrossRef]
Kennedy, J. , and Eberhart, R. , 1995, “ Particle Swarm Optimization,” IEEE International Conference on Neural Networks (ICNN), Perth, WA, Nov. 27–Dec. 1, Vol. 4, pp. 1942–1948.
Vlachogiannis, J. G. , and Lee, K. Y. , 2006, “ A Comparative Study on Particle Swarm Optimization for Optimal Steady-State Performance of Power Systems,” IEEE Trans. Power Syst., 21(4), pp. 1718–1728. [CrossRef]
Yin, H. , Zhu, Z. , and Ding, F. , 2011, “ Model Order Determination Using the Hankel Matrix of Impulse Responses,” Appl. Math. Lett., 24(5), pp. 797–802. [CrossRef]
Refaeilzadeh, P. , Tang, L. , and Liu, H. , 2009, “ Cross-Validation,” Encyclopedia of Database Systems, Springer, New York, pp. 532–538.

Figures

Grahic Jump Location
Fig. 1

Schematic of SOFC-GT hybrid system

Grahic Jump Location
Fig. 2

The structure diagram of NARX model

Grahic Jump Location
Fig. 3

Training process of NARX model of SOFC temperature

Grahic Jump Location
Fig. 4

Optimization process of LSSVR parameters

Grahic Jump Location
Fig. 5

Training data of input variables

Grahic Jump Location
Fig. 6

Training data of output variables

Grahic Jump Location
Fig. 7

Effect of fitness function on cathode outlet temperature

Grahic Jump Location
Fig. 8

Effect of fitness function on anode outlet temperature

Grahic Jump Location
Fig. 9

Large size training data of input variables

Grahic Jump Location
Fig. 10

Large size training data of output variables

Grahic Jump Location
Fig. 11

Effect of training data size on cathode outlet temperature

Grahic Jump Location
Fig. 12

Effect of training data size on anode outlet temperature

Grahic Jump Location
Fig. 13

Running time of NARX model and mechanism model

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In