0
Research Papers

A Fundamental Study on the Chemical Stability of La1−xSrxCo0.2Fe0.8O3−δ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells

[+] Author and Article Information
Yufeng Qiu, Jian Pu

Center for Fuel Cell Innovation,
School of Materials Science and Engineering,
State Key Laboratory of Material Processing and
Die and Mould Technology,
Huazhong University of
Science and Technology,
Wuhan 430074, China

Jian Li

Center for Fuel Cell Innovation,
School of Materials Science and Engineering,
State Key Laboratory of Material Processing and
Die and Mould Technology,
Huazhong University of
Science and Technology,
Wuhan 430074, China
e-mail: lijian@hust.edu.cn

Yihui Liu

Hubei Key Laboratory of Advanced Technology
for Automotive Components,
Wuhan University of Technology,
Wuhan 430070, China;
Hubei Collaborative Innovation Center for
Automotive Components Technology,
Wuhan University of Technology,
Wuhan 430070, China
e-mail: liuyihui@whut.edu.cn

Bin Hua

Department of Chemical and
Materials Engineering,
University of Alberta,
Edmonton, AB T6G 1H9, Canada

1Corresponding authors.

Manuscript received January 14, 2017; final manuscript received April 6, 2017; published online June 13, 2017. Assoc. Editor: San Ping Jiang.

J. Electrochem. En. Conv. Stor. 14(3), 031002 (Jun 13, 2017) (6 pages) Paper No: JEECS-17-1009; doi: 10.1115/1.4036812 History: Received January 14, 2017; Revised April 06, 2017

The chemical stability of La1−xSrxCo0.2Fe0.8O3−δ (x = 0, 0.4, 0.6, and 1) oxides before and after annealing at 750 °C in air is investigated by field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and environmental transmission electron microscopy (TEM). Results indicate that Sr surface segregation has initially occurred at the sintering stage, and then, the secondary-phase particles are formed with increasing the heat-treatment time at 750 °C in air. Increasing Sr content accelerates Sr segregation on the surface, because of two driving forces including interaction forces in the crystal lattice and thermal activation. AES and XPS results reveal that Sr and Co segregations toward the surface have great contributions to the chemical instability of La1−xSrxCo1−yFeyO3−δ (LSCF) during annealing.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zhang, X. , Shi, W. , Zhu, J. , Kharistal, D. J. , Zhao, W. , Lalia, B. S. , Hng, H. H. , and Yan, Q. , 2011, “ High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made From Porous CuO Nanobelts and Single-Walled Carbon Nanotubes,” ACS Nano, 5(3), pp. 2013–2019. [CrossRef] [PubMed]
Laguna-Bercero, M. A. , Kilner, J. A. , and Skinner, S. J. , 2010, “ Performance and Characterization of (La, Sr)MnO3/YSZ and La0.6Sr0.4Co0.2Fe0.8O3 Electrodes for Solid Oxide Electrolysis Cells,” Chem. Mater., 22(3), pp. 1134–1141. [CrossRef]
Dutta, A. , Mukhopadhyay, J. , and Basu, R. N. , 2009, “ Combustion Synthesis and Characterization of LSCF-Based Materials as Cathode of Intermediate Temperature Solid Oxide Fuel Cells,” J. Eur. Ceram. Soc., 29(10), pp. 2003–2011. [CrossRef]
Zhao, L. , Drennan, J. , Kong, C. , Amarasinghe, S. , and Jiang, S. P. , 2014, “ Insight Into Surface Segregation and Chromium Deposition on La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells,” J. Mater. Chem. A, 2, pp. 111–114.
Harris, J. , Yan, Y. , Bateni, R. , and Kesler, O. , 2016, “ Degradation of La0.6Sr0.4Co0.2Fe0.8O3-δ–Ce0.8Sm0.2O1.9 Cathodes on Coated and Uncoated Porous Metal Supports,” Fuel Cells, 16(3), pp. 319–329. [CrossRef]
Yokokawa, H. , Tu, H. , Iwanschitz, B. , and Mai, A. , 2008, “ Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability,” J. Power Sources, 182(2), pp. 400–412. [CrossRef]
Liu, Y. , Chen, K. , Zhao, L. , Chi, B. , Pu, J. , Jiang, S. P. , and Jian, L. , 2014, “ Performance Stability and Degradation Mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes Under Solid Oxide Fuel Cells Operation Conditions,” Int. J. Hydrogen Energy, 39(28), pp. 15868–15876. [CrossRef]
Mai, A. , Becker, M. , Assenmacher, W. , Tietz, F. , Hathiramani, D. , Iverstiffee, E. , Stover, D. , and Mader, W. , 2006, “ Time-Dependent Performance of Mixed-Conducting SOFC Cathodes,” Solid State Ionics, 177(19–25), pp. 1965–1968. [CrossRef]
Knibbe, R. , Hjelm, J. , Menon, M. , Pryds, N. , Søgaard, M. , Wang, H. J. , and Neufeld, K. , 2010, “ Cathode-Electrolyte Interfaces With CGO Barrier Layers in SOFC,” J. Am. Ceram. Soc., 93(9), pp. 2877–2883. [CrossRef]
Lee, S. N. , Atkinson, A. , and Kilner, J. A. , 2013, “ Effect of Chromium on La0.6Sr0.4Co0.2Fe0.8O3-δ Solid Oxide Fuel Cell Cathodes,” J. Electrochem. Soc., 160(6), pp. F629–F635. [CrossRef]
Zhao, L. , Hyodo, J. , Chen, K. , Ai, N. , Amarasinghe, S. , Ishihara, T. , and Jiang, S. P. , 2013, “ Effect of Boron Deposition and Poisoning on the Surface Exchange Properties of LSCF Electrode Materials of Solid Oxide Fuel Cells,” J. Electrochem. Soc., 160(6), pp. F682–F686. [CrossRef]
Wang, C. C. , Chen, K. , and Jiang, S. P. , 2014, “ Sulfur Deposition and Poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode Materials of Solid Oxide Fuel Cells,” J. Electrochem. Soc., 161(12), pp. F1133–F1139. [CrossRef]
Liu, Y. , Chi, B. , Pu, J. , and Li, J. , 2012, “ Performance Degradation of Impregnated La0.6Sr0.4Co0.2Fe0.8O3+Y2O3 Stabilized ZrO2 Composite Cathodes of Intermediate Temperature Solid Oxide Fuel Cells,” Int. J. Hydrogen Energy, 37(5), pp. 4388–4393. [CrossRef]
Upasen, S. , Batocchi, P. , Mauvy, F. , Slodczyk, A. , and Colomban, P. , 2015, “ Chemical and Structural Stability of La0.6Sr0.4Co0.2Fe0.8O3-δ Ceramic vs. Medium/High Water Vapor Pressure,” Ceram. Int., 41(10), pp. 14137–14147. [CrossRef]
Liu, Z. , Liu, M. , Yang, L. , and Liu, M. , 2013, “ LSM-Infiltrated LSCF Cathodes for Solid Oxide Fuel Cells,” J. Energy Chem., 22(4), pp. 555–559. [CrossRef]
Tsvetkov, N. , Lu, Q. , and Yildiz, B. , 2015, “ Improved Electrochemical Stability at the Surface of La0.8Sr0.2CoO3 Achieved by Surface Chemical Modification,” Faraday Discuss., 182, pp. 257–269. [CrossRef] [PubMed]
Guo, S. , Wu, H. , Puleo, F. , and Liotta, L. , 2015, “ B-Site Metal (Pd, Pt, Ag, Cu, Zn, Ni) Promoted La1-xSrxCo1-yFeyO3-δ Perovskite Oxides as Cathodes for IT-SOFCs,” Catalysts, 5(1), pp. 366–391. [CrossRef]
Fan, B. , and Liu, X. , 2009, “ A-Deficit LSCF for Intermediate Temperature Solid Oxide Fuel Cells,” Solid State Ionics, 180(14–16), pp. 973–977. [CrossRef]
Ding, H. , Virkar, A. V. , Liu, M. , and Liu, F. , 2013, “ Suppression of Sr Surface Segregation in La1-xSrxCo1-yFeyO3-δ: A First Principles Study,” Phys. Chem. Chem. Phys., 15(2), pp. 489–496. [CrossRef] [PubMed]
Lee, W. , Han, J. W. , Chen, Y. , Cai, Z. , and Yildiz, B. , 2013, “ Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites,” J. Am. Chem. Soc., 135(21), pp. 7909–7025. [CrossRef] [PubMed]
Lee, H. B. , Prinz, F. B. , and Cai, W. , 2010, “ Atomistic Simulations of Surface Segregation of Defects in Solid Oxide Electrolytes,” Acta Mater., 58(6), pp. 2197–2206. [CrossRef]
Cai, Z. , Kubicek, M. , Fleig, J. , and Yildiz, B. , 2012, “ Chemical Heterogeneities on La0.6Sr0.4CoO3-δ Thin Films—Correlations to Cathode Surface Activity and Stability,” Chem. Mater., 24(6), pp. 1116–1127. [CrossRef]
Wang, W. , and Jiang, S. P. , 2006, “ A Mechanistic Study on the Activation Process of (La, Sr)MnO3 Electrodes of Solid Oxide Fuel Cells,” Solid State Ionics, 177(15–16), pp. 1361–1369. [CrossRef]
Simner, S. P. , Anderson, M. D. , Engelhard, M. H. , and Stevenson, J. W. , 2006, “ Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes,” Electrochem. Solid-State Lett., 9(10), pp. A478–A481.
Tai, L. W. , Nasrallah, M. M. , Anderson, H. U. , Sparlin, D. M. , and Sehlin, S. R. , 1995, “ Structure and Electrical Properties of La1-xSrxCo1-yFeyO3—Part 2: The System La1-xSrxCo0.2Fe0.8O3,” Solid State Ionics, 76(3–4), pp. 273–283. [CrossRef]
Tai, L. W. , Nasrallah, M. M. , Anderson, H. U. , Sparlin, D. M. , and Sehlin, S. R. , 1995, “ Structure and Electrical Properties of La1-xSrxCo1-yFeyO3—Part 1: The System La0.8Sr0.2Co1-yFeyO3,” Solid State Ionics, 76(3–4), pp. 259–271. [CrossRef]
Teraoka, Y. , Zhang, H. M. , Okamoto, K. , and Yamazoe, N. , 1988, “ Mixed Ionic-Electronic Conductivity of La1-xSrxCo1-yFeyO3-δ Perovskite-Type Oxides,” Mater. Res. Bull., 23(1), pp. 51–58. [CrossRef]
Tai, L. W. , Nasrallah, M. M. , and Anderson, H. U. , 1995, “ Thermochemical Stability, Electrical Conductivity, and Seebeck Coefficient of Sr-Doped LaCo0.2Fe0.8O3-δ,” J. Solid State Chem., 118(1), pp. 117–124. [CrossRef]
Zhao, S. , Gao, L. , Lan, C. , Pandey, S. S. , Hayase, S. , and Ma, T. , 2016, “ First Principles Analysis of Oxygen Vacancy Formation and Migration in Sr2BMoO6 (B = Mg, Co, Ni),” RSC Adv., 6(38), pp. 31968–31975. [CrossRef]
Horvath, G. , Gerblinger, J. , Meixner, H. , and Giber, J. , 1996, “ Segregation Driving Forces in Perovskite Titanates,” Sens. Actuators B, 32(2), pp. 93–99. [CrossRef]
Araki, W. , Yamaguchi, T. , Arai, Y. , and Malzbender, J. , 2014, “ Strontium Surface Segregation in La0.58Sr0.4Co0.2Fe0.8O3-δ Annealed Under Compression,” Solid State Ionics, 268(Part A), pp. 1–6. [CrossRef]
Estrade, S. , Rebled, J. M. , Arbiol, J. , Peiro, F. , Infante, I. C. , Herranz, G. , Sanchez, F. , Fontcuberta, J. , Cordoba, R. , Mendis, B. G. , and Bleloch, A. L. , 2009, “ Effects of Thickness on the Cation Segregation in Epitaxial (001) and (110) La2/3Ca1/3MnO3 Thin Films,” Appl. Phys. Lett., 95(7), pp. 248–250. [CrossRef]
Jiang, S. P. , 2008, “ Development of Lanthanum Strontium Manganite Perovskite Cathode Materials of Solid Oxide Fuel Cells: A Review,” J. Mater. Sci., 43(21), pp. 6799–6833. [CrossRef]
Tasker, P. W. , Colbourn, E. A. , and Mackrodt, W. C. , 2006, “ Segregation of Isovalent Impurity Cations at the Surfaces of MgO and CaO,” J. Am. Ceram. Soc., 68(2), pp. 74–80. [CrossRef]
Lee, W. , Cai, Z. , and Yildiz, B. , 2012, “ Role of Chemical Heterogeneities on Oxygen Reduction Kinetics on the Surface of Thin Film Cathodes,” ECS Trans., 45(1), pp. 243–272.
Chen, Y. , Téllez, H. , Burriel, M. , Yang, F. , Tsvetkov, N. , Cai, Z. , McComb, D. W. , Kilner, J. A. , and Yildiz, B. , 2015, “ Segregated Chemistry and Structure on (001) and (100) Surfaces of (La1-xSrx)2CoO4 Override the Crystal Anisotropy in Oxygen Exchange Kinetics,” Chem. Mater., 27(15), pp. 5436–5450. [CrossRef]
Katsuki, M. , Wang, S. , Dokiya, M. , and Hashimoto, T. , 2003, “ High Temperature Properties of La0.6Sr0.4Co0.8Fe0.2O3-δ Oxygen Nonstoichiometry and Chemical Diffusion Constant,” Solid State Ionics, 156(3–4), pp. 453–461. [CrossRef]
Mantzavinos, D. , Hartley, A. , Metcalfe, I . S. , and Sahibzada, M. , 2000, “ Oxygen Stoichiometries in La1-xSrxCo1-yFeyO3-δ Perovskites at Reduced Oxygen Partial Pressures,” Solid State Ionics, 134(1–2), pp. 103–109. [CrossRef]
Falcón, H. , Barbero, J. A. , Araujo, G. , Casais, M. T. , Martı́nez-Lope, M. J. , Alonso, J. A. , and Fierro, J. L. G. , 2004, “ Double Perovskite Oxides A2FeMoO6-δ (A=Ca, Sr and Ba) as Catalysts for Methane Combustion,” Appl. Catal. B: Environ., 53(1), pp. 37–45. [CrossRef]
Fierro, J. L. G. , 1990, “ Structure and Composition of Perovskite Surface in Relation to Adsorption and Catalytic Properties,” Catal. Today, 8(2), pp. 153–174. [CrossRef]
Garcı́a de la Cruz, R. M. , Falcón, H. , Peña, M. A. , and Fierro, J. L. G. , 2001, “ Role of Bulk and Surface Structures of La1-xSrxNiO3 Perovskite-Type Oxides in Methane Combustion,” Appl. Catal. B: Environ., 33(1), pp. 45–55. [CrossRef]
Van der Heider, P. A. W. , 2002, “ Systematic X-Ray Photoelectron Spectroscopic Study of La1-xSrx-Based Perovskite-Type Oxides,” Surf. Interface Anal., 33(5), pp. 414–425. [CrossRef]
Crumlin, E. J. , Mutoro, E. , Liu, Z. , Grass, M. E. , Biegalski, M. D. , Lee, Y. L. , Morgan, D. , Christen, H. M. , Bluhm, H. , and Shao-Horn, Y. , 2012, “ Surface Strontium Enrichment on Highly Active Perovskites for Oxygen Electrocatalysis in Solid Oxide Fuel Cells,” Energy Environ. Sci., 5(3), pp. 6081–6088. [CrossRef]
Pakhare, D. , and Spivey, J. , 2014, “ A Review of Dry (CO2) Reforming of Methane Over Noble Metal Catalysts,” Chem. Soc. Rev., 43(22), pp. 7813–7837. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

XRD patterns of La1−xSrxCo0.2Fe0.8O3−δ (x = 0, 0.4, 0.6, and 1) powders, and the inset is a local part corresponding to the (110) planes

Grahic Jump Location
Fig. 2

Refined XRD patterns of (a) LCF, (b) LSCF40, (c) LSCF60, and (d) SCF powders

Grahic Jump Location
Fig. 3

SEM images observed on the surface of dense La1−xSrxCo0.2Fe0.8O3−δ bar samples before and after heat treatment for different times at 750 °C in air

Grahic Jump Location
Fig. 4

(a) AES image on the surface of SCF bar after annealing for 200 h at 750 °C in air, and the corresponding elemental maps for (b) Sr, (c) Co, and (d) Fe

Grahic Jump Location
Fig. 5

Schematic diagrams of chemical changes on the surface of SCF sample before and after annealing at 750 °C in air (the size of each part in the diagrams is not the real size)

Grahic Jump Location
Fig. 6

The core-level spectra of (a) C 1 s, (b) O 1 s, and (c) Sr 3 d on the surface of dense SCF sample before and after annealing at 750 °C in air

Grahic Jump Location
Fig. 7

TEM images of the SCF power after annealing for 200 h at 750 °C in air: (a) SCF powder and (b) a typical region of the segregated particle. The insets are the corresponding electron diffraction patterns obtained by FFT.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In