Expert View

Multiscale Tomography-Based Analysis of Polymer Electrolyte Fuel Cells: Towards a Fully Resolved Gas Diffusion Electrode Reconstruction

[+] Author and Article Information
Matthias Klingele, Riko Moroni

University of Freiburg,
Georges-Koehler-Allee 103,
Freiburg 79110, Germany

Severin Vierrath

University of Freiburg,
Georges-Koehler-Allee 103,
Freiburg 79110, Germany;
Georges-Koehler-Allee 103,
Freiburg 79110, Germany

Simon Thiele

University of Freiburg,
Georges-Koehler-Allee 103,
Freiburg 79110, Germany;
Georges-Koehler-Allee 103,
Freiburg 79110, Germany;
University of Freiburg,
Georges-Koehler-Allee 105,
Freiburg 79110, Germany

1Corresponding author.

Manuscript received May 11, 2017; final manuscript received June 29, 2017; published online September 19, 2017. Assoc. Editor: Dirk Henkensmeier.

J. Electrochem. En. Conv. Stor. 15(1), 014701 (Sep 19, 2017) (7 pages) Paper No: JEECS-17-1045; doi: 10.1115/1.4037244 History: Received May 11, 2017; Revised June 29, 2017

The microstructure of a fuel cell electrode largely determines the performance of the whole fuel cell system. In this regard, tomographic imaging is a valuable tool for the understanding and control of the electrode morphology. The distribution of pore- and feature-sizes within fuel cell electrodes covers several orders of magnitude, ranging from millimeters in the gas diffusion layer (GDL) down to few nanometers in the catalyst layer. This obligates the application of various tomographic methods for imaging every aspect of a fuel cell. This perspective evaluates the capabilities, limits, and challenges of each of these methods. Further, it highlights and suggests efforts toward the integration of multiple tomographic methods into single multiscale datasets, a venture which aims at large-scale, and morphologically fully resolved fuel cell reconstructions.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Gröger, O. , Gasteiger, H. A. , and Suchsland, J.-P. , 2015, “ Review—Electromobility: Batteries or Fuel Cells?,” J. Electrochem. Soc., 162(14), pp. A2605–A2622. [CrossRef]
Litster, S. , and McLean, G. , 2004, “ PEM Fuel Cell Electrodes,” J. Power Sources, 130(1–2), pp. 61–76. [CrossRef]
Wilson, M. S. , Valerio, J. A. , and Gottesfeld, S. , 1995, “ Low Platinum Loading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers,” Electrochim. Acta, 40(3), pp. 355–363. [CrossRef]
Lopez-Haro, M. , Guétaz, L. , Printemps, T. , Morin, A. , Escribano, S. , Jouneau, P.-H. , Bayle-Guillemaud, P. , Chandezon, F. , and Gebel, G. , 2014, “ Three-Dimensional Analysis of Nafion Layers in Fuel Cell Electrodes,” Nat. Commun., 5, p. 5229. [CrossRef] [PubMed]
Thiele, S. , Fürstenhaupt, T. , Banham, D. , Hutzenlaub, T. , Birss, V. , Ziegler, C. , and Zengerle, R. , 2013, “ Multiscale Tomography of Nanoporous Carbon-Supported Noble Metal Catalyst Layers,” J. Power Sources, 228, pp. 185–192. [CrossRef]
Cindrella, L. , Kannan, A. M. , Lin, J. F. , Saminathan, K. , Ho, Y. , Lin, C. W. , and Wertz, J. , 2009, “ Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells—A Review,” J. Power Sources, 194(1), pp. 146–160. [CrossRef]
Wargo, E. A. , Schulz, V. P. , Çeçen, A. , Kalidindi, S. R. , and Kumbur, E. C. , 2013, “ Resolving Macro- and Micro-Porous Layer Interaction in Polymer Electrolyte Fuel Cells Using Focused Ion Beam and X-Ray Computed Tomography,” Electrochim. Acta, 87, pp. 201–212. [CrossRef]
Mayrhofer, K. J. , Meier, J. C. , Ashton, S. J. , Wiberg, G. K. , Kraus, F. , Hanzlik, M. , and Arenz, M. , 2008, “ Fuel Cell Catalyst Degradation on the Nanoscale,” Electrochem. Commun., 10(8), pp. 1144–1147. [CrossRef]
Gontard, L. C. , Dunin-Borkowski, R. E. , and Ozkaya, D. , 2008, “ Three-Dimensional Shapes and Spatial Distributions of Pt and PtCr Catalyst Nanoparticles on Carbon Black,” J. Microsc., 232(2), pp. 248–259. [CrossRef] [PubMed]
Schulenburg, H. , Schwanitz, B. , Linse, N. , Scherer, G. G. , Wokaun, A. , Krbanjevic, J. , Grothausmann, R. , and Manke, I. , 2011, “ 3D Imaging of Catalyst Support Corrosion in Polymer Electrolyte Fuel Cells,” J. Phys. Chem. C, 115(29), pp. 14236–14243. [CrossRef]
Dubau, L. , Castanheira, L. , Berthom, G. , and Maillard, F. , 2013, “ An Identical-Location Transmission Electron Microscopy Study on the Degradation of Pt/C Nanoparticles Under Oxidizing, Reducing and Neutral Atmosphere,” Electrochim. Acta, 110, pp. 273–281. [CrossRef]
Perez-Alonso, F. J. , Elkjær, C. F. , Shim, S. S. , Abrams, B. L. , Stephens, I. E. , and Chorkendorff, I. , 2011, “ Identical Locations Transmission Electron Microscopy Study of Pt/C Electrocatalyst Degradation During Oxygen Reduction Reaction,” J. Power Sources, 196(15), pp. 6085–6091. [CrossRef]
Ziegler, C. , Thiele, S. , and Zengerle, R. , 2011, “ Direct Three-Dimensional Reconstruction of a Nanoporous Catalyst Layer for a Polymer Electrolyte Fuel Cell,” J. Power Sources, 196(4), pp. 2094–2097. [CrossRef]
Hutzenlaub, T. , Becker, J. , Zengerle, R. , and Thiele, S. , 2013, “ How Coarsening the 3D Reconstruction of a Porous Material Influences Diffusivity and Conductivity Values,” ECS Electrochem. Lett., 2(2), pp. F14–F17. [CrossRef]
Wargo, E. A. , Kotaka, T. , Tabuchi, Y. , and Kumbur, E. C. , 2013, “ Comparison of Focused Ion Beam Versus Nano-Scale X-Ray Computed Tomography for Resolving 3-D Microstructures of Porous Fuel Cell Materials,” J. Power Sources, 241, pp. 608–618. [CrossRef]
Ostadi, H. , Rama, P. , Liu, Y. , Chen, R. , Zhang, X. X. , and Jiang, K. , 2010, “ 3D Reconstruction of a Gas Diffusion Layer and a Microporous Layer,” J. Membr. Sci., 351(1–2), pp. 69–74. [CrossRef]
Müllner, T. , Zankel, A. , Mayrhofer, C. , Reingruber, H. , Höltzel, A. , Lv, Y. , Svec, F. , and Tallarek, U. , 2012, “ Reconstruction and Characterization of a Polymer-Based Monolithic Stationary Phase Using Serial Block-Face Scanning Electron Microscopy,” Langmuir, 28(49), pp. 16733–16737. [CrossRef] [PubMed]
Micheva, K. D. , and Smith, S. J. , 2007, “ Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits,” Neuron, 55(1), pp. 25–36. [CrossRef] [PubMed]
Caplan, J. , Niethammer, M. , Taylor, R. M. , and Czymmek, K. J. , 2011, “ The Power of Correlative Microscopy: Multi-Modal, Multi-Scale, Multi-Dimensional,” Curr. Opin. Struct. Biol., 21(5), pp. 686–693. [CrossRef] [PubMed]
Wacker, I. , and Schroeder, R. R. , 2013, “ Array Tomography,” J. Microsc., 252(2), pp. 93–99. [CrossRef] [PubMed]
Alekseev, A. , Efimov, A. , Loos, J. , Matsko, N. , and Syurik, J. , 2014, “ Three-Dimensional Imaging of Polymer Materials by Scanning Probe Tomography,” Eur. Polym. J., 52, pp. 154–165. [CrossRef]
Aleksandrova, E. , Hiesgen, R. , Friedrich, K. A. , and Roduner, E. , 2007, “ Electrochemical Atomic Force Microscopy Study of Proton Conductivity in a Nafion Membrane,” Phys. Chem. Chem. Phys., 9(21), pp. 2735–2743. [CrossRef] [PubMed]
Bunn, J. R. , Penumadu, D. , Woracek, R. , Kardjilov, N. , Hilger, A. , Manke, I. , and Williams, S. , 2013, “ Detection of Water With High Sensitivity to Study Polymer Electrolyte Fuel Cell Membranes Using Cold Neutrons at High Spatial Resolution,” Appl. Phys. Lett., 102(23), p. 234102. [CrossRef]
Owejan, J. P. , Trabold, T. A. , and Mench, M. M. , 2014, “ Oxygen Transport Resistance Correlated to Liquid Water Saturation in the Gas Diffusion Layer of PEM Fuel Cells,” Int. J. Heat Mass Transfer, 71, pp. 585–592. [CrossRef]
Göbel, M. , Godehardt, M. , and Schladitz, K. , 2017, “ Multi-Scale Structural Analysis of Gas Diffusion Layers,” J. Power Sources, 355, pp. 8–17. [CrossRef]
Terao, T. , Inoue, G. , Kawase, M. , Kubo, N. , Yamaguchi, M. , Yokoyama, K. , Tokunaga, T. , Shinohara, K. , Hara, Y. , and Hara, T. , 2017, “ Development of Novel Three-Dimensional Reconstruction Method for Porous Media for Polymer Electrolyte Fuel Cells Using Focused Ion Beam-Scanning Electron Microscope Tomography,” J. Power Sources, 347, pp. 108–113. [CrossRef]
Cetinbas, F. C. , Ahluwalia, R. K. , Kariuki, N. , de Andrade, V. , Fongalland, D. , Smith, L. , Sharman, J. , Ferreira, P. , Rasouli, S. , and Myers, D. J. , 2017, “ Hybrid Approach Combining Multiple Characterization Techniques and Simulations for Microstructural Analysis of Proton Exchange Membrane Fuel Cell Electrodes,” J. Power Sources, 344, pp. 62–73. [CrossRef]
Lange, K. J. , Sui, P.-C. , and Djilali, N. , 2011, “ Pore Scale Modeling of a Proton Exchange Membrane Fuel Cell Catalyst Layer: Effects of Water Vapor and Temperature,” J. Power Sources, 196(6), pp. 3195–3203. [CrossRef]
Lange, K. J. , Sui, P.-C. , and Djilali, N. , 2010, “ Pore Scale Simulation of Transport and Electrochemical Reactions in Reconstructed PEMFC Catalyst Layers,” J. Electrochem. Soc., 157(10), pp. B1434–B1442. [CrossRef]
Siddique, N. A. , and Liu, F. , 2010, “ Process Based Reconstruction and Simulation of a Three-Dimensional Fuel Cell Catalyst Layer,” Electrochim. Acta, 55(19), pp. 5357–5366. [CrossRef]
Mukherjee, P. P. , and Wang, C. Y. , 2006, “ Stochastic Microstructure Reconstruction and Direct Numerical Simulation of the PEFC Catalyst Layer,” J. Electrochem. Soc., 153(5), pp. A840–A849. [CrossRef]
Holdcroft, S. , 2014, “ Fuel Cell Catalyst Layers: A Polymer Science Perspective,” Chem. Mater., 26(1), pp. 381–393. [CrossRef]
Vierrath, S. , Güder, F. , Menzel, A. , Hagner, M. , Zengerle, R. , Zacharias, M. , and Thiele, S. , 2015, “ Enhancing the Quality of the Tomography of Nanoporous Materials for Better Understanding of Polymer Electrolyte Fuel Cell Materials,” J. Power Sources, 285, pp. 413–417. [CrossRef]
Klingele, M. , Zengerle, R. , and Thiele, S. , 2015, “ Quantification of Artifacts in Scanning Electron Microscopy Tomography: Improving the Reliability of Calculated Transport Parameters in Energy Applications Such as Fuel Cell and Battery Electrodes,” J. Power Sources, 275, pp. 852–859. [CrossRef]


Grahic Jump Location
Fig. 1

Cartoon (top) and real imaged (bottom) morphology of a fuel cell. It is shown that morphological features range from dimensions of several micrometers down to few nanometers. Different methods are thus needed to image these features in varying resolutions and field of views. In this figure, this is X-ray tomography (a) and (b), FIB–SEM tomography (c), and TEM tomography (d).

Grahic Jump Location
Fig. 2

(b) Global X-ray dataset of a gas diffusion electrode. Fibers, pore space within the fibers, microporous layer (MPL), and catalyst layer (CL) can be discriminated. The microporosity of the microporous layer and the catalyst layer cannot be resolved by X-ray, but by FIB–SEM tomography, as depicted in (c) and (a), respectively. Calculated parameters from the FIB–SEM reconstruction can be inscribed into the respective areas of the X-ray dataset. From this, multiscale tomography-based analysis can be performed for the whole gas diffusion electrode.

Grahic Jump Location
Fig. 3

Integral and spatially resolved multiscale particle- and pore-size analysis of the global gas diffusion electrode reconstruction. The region starting at approximately 150 μm in depth can be assigned to the microporous layer and catalyst layer. Information within this region is obtained by FIB–SEM tomography, whereas all other information is obtained from X-ray tomography. By this, morphological features ranging from several nanometers up to micrometers can be covered within one dataset (MGS: mean grain size, GVF: grain (or particle) volume fraction, MPS: mean pore size, and PVF: pore volume fraction).

Grahic Jump Location
Fig. 4

Two methods for adding the microporous carbon matrix to the microporous layer identified by X-ray. In (a), a microporous FIB–SEM reconstruction of the microporous layer is directly inscribed by stringing together the reconstructed volume. In (b), the microporosity is added to the microporous layer by stochastically placing spheres, so that the whole layer matches the porosity and tortuosity as well as the pore- and grain-size distribution of the FIB–SEM reconstruction.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In