0
Review Article

Redox Flow Batteries for Energy Storage: A Technology Review

[+] Author and Article Information
Ruijie Ye, Zhifeng Huang, Sangwon Kim

Transfercenter Sustainable Electrochemistry,
Saarland University,
Saarbrücken 66125, Germany;
Bio Sensor and Materials Group,
KIST Europe,
Campus E7 1,
Saarbrücken 66123, Germany

Dirk Henkensmeier

Fuel Cell Research Center,
Korea Institute of Science and Technology,
Seoul 02792, South Korea;
ET-GT,
University of Science and Technology,
Seoul 02792, South Korea;
Green School,
Korea University,
Seoul 136-713, South Korea

Sang Jun Yoon

Transfercenter Sustainable Electrochemistry,
Saarland University,
Saarbrücken 66125, Germany;
Bio Sensor and Materials Group,
KIST Europe,
Campus E7 1,
Saarbrücken 66123, Germany;
Center for Membranes,
Advanced Materials Division,
Korea Research Institute of Chemical Technology,
Daejeon 34114, South Korea

Dong Kyu Kim

Transfercenter Sustainable Electrochemistry,
Saarland University,
Saarbrücken 66125, Germany;
Bio Sensor and Materials Group,
KIST Europe,
Campus E7 1,
Saarbrücken 66123, Germany;
Department of Mechanical and
Aerospace Engineering,
Seoul National University,
Seoul 08826, South Korea

Zhenjun Chang

Transfercenter Sustainable Electrochemistry,
Saarland University,
Saarbrücken 66125, Germany;
Bio Sensor and Materials Group,
KIST Europe,
Campus E7 1,
Saarbrücken 66123, Germany;
College of Materials Science and Engineering,
Jiangsu University of Science and Technology,
Zhenjiang 212003, China

Ruiyong Chen

Transfercenter Sustainable Electrochemistry,
Saarland University,
Saarbrücken 66125, Germany;
Bio Sensor and Materials Group,
KIST Europe,
Campus E7 1,
Saarbrücken 66123, Germany
e-mail: r.chen@kist-europe.de

1Corresponding author.

Manuscript received May 15, 2017; final manuscript received July 5, 2017; published online September 19, 2017. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 15(1), 010801 (Sep 19, 2017) (21 pages) Paper No: JEECS-17-1050; doi: 10.1115/1.4037248 History: Received May 15, 2017; Revised July 05, 2017

The utilization of intermittent renewable energy sources needs low-cost, reliable energy storage systems in the future. Among various electrochemical energy storage systems, redox flow batteries (RFBs) are promising with merits of independent energy storage and power generation capability, localization flexibility, high efficiency, low scaling-up cost, and excellent long charge/discharge cycle life. RFBs typically use metal ions as reacting species. The most exploited types are all-vanadium RFBs (VRFBs). Here, we discuss the core components for the VRFBs, including the development and application of different types of membranes, electrode materials, and stack system. In addition, we introduce the recent progress in the discovery of novel electrolytes, such as redox-active organic compounds, polymers, and organic/inorganic suspensions. Versatile structures, tunable properties, and abundant resources of organic-based electrolytes make them suitable for cost-effective stationary applications. With the active species in solid form, suspension electrolytes are expected to provide enhanced volumetric energy densities.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Soloveichik, G. L. , 2015, “ Flow Batteries: Current Status and Trends,” Chem. Rev., 115(20), pp. 11533–11558. [CrossRef] [PubMed]
Noack, J. , Roznyatovskaya, N. , Herr, T. , and Fischer, P. , 2015, “ The Chemistry of Redox-Flow Batteries,” Angew. Chem. Int. Ed., 54(34), pp. 9776–9809. [CrossRef]
Li, L. , Kim, S. , Wang, W. , Vijayakumar, M. , Nie, Z. , Chen, B. , Zhang, J. , Xia, G. , Hu, J. , Graff, G. , Liu, J. , and Yang, Z. , 2011, “ A Stable Vanadium Redox-Flow Battery With High Energy Density for Large-Scale Energy Storage,” Adv. Energy Mater., 1(3), pp. 394–400. [CrossRef]
Chakrabarti, M. H. , Brandon, N. P. , Hajimolana, S. A. , Tariq, F. , Yufit, V. , Hashim, M. A. , Hussain, M. A. , Low, C. T. J. , and Aravind, P. V. , 2014, “ Application of Carbon Materials in Redox Flow Batteries,” J. Power Sources, 253, pp. 150–166. [CrossRef]
Chen, R. , Kim, S. , and Chang, Z. , 2017, “ Redox Flow Batteries: Fundamentals and Applications,” Redox: Principles and Advance Applications, M. A. A. Khalid , ed., InTech, Rijeka, Croatia. [CrossRef]
Park, M. , Ryu, J. , and Cho, J. , 2015, “ Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries,” Chem. Asian J., 10(10), pp. 2096–2110. [CrossRef] [PubMed]
Chen, R. , and Hempelmann, R. , 2016, “ Ionic Liquid-Mediated Aqueous Redox Flow Batteries for High Voltage Applications,” Electrochem. Commun., 70, pp. 56–59. [CrossRef]
Li, B. , and Liu, J. , 2017, “ Progress and Directions in Low-Cost Redox Flow Batteries for Large-Scale Energy Storage,” Natl. Sci. Rev., 4(1), pp. 91–105.
Duduta, M. , Ho, B. , Wood, V. C. , Limthongkul, P. , Brunini, V. E. , Carter, W. C. , and Chiang, Y. M. , 2011, “ Semi-Solid Lithium Rechargeable Flow Battery,” Adv. Energy Mater., 1(4), pp. 511–516. [CrossRef]
Schwenzer, B. , Zhang, J. , Kim, S. , Li, L. , Liu, J. , and Yang, Z. , 2011, “ Membrane Development for Vanadium Redox Flow Batteries,” ChemSusChem, 4(10), pp. 1388–1406. [CrossRef] [PubMed]
Doan, T. N. L. , Hoang, T. K. A. , and Chen, P. , 2015, “ Recent Development of Polymer Membranes as Separators for All-Vanadium Redox Flow Batteries,” RSC Adv., 5(89), pp. 72805–72815. [CrossRef]
Peng, S. , Yan, X. , Wu, X. , Zhang, D. , Luo, Y. , Su, L. , and He, G. , 2017, “ Thin Skinned Asymmetric Polybenzimidazole Membranes With Readily Tunable Morphologies for High-Performance Vanadium Flow Batteries,” RSC Adv., 7(4), pp. 1852–1862. [CrossRef]
Yuan, Z. , Duan, Y. , Zhang, H. , Li, X. , Zhang, H. , and Vankelecom, I. , 2016, “ Advanced Porous Membranes With Ultra-High Selectivity and Stability for Vanadium Flow Batteries,” Energy Environ. Sci., 9(2), pp. 441–447. [CrossRef]
Zhao, Y. , Li, M. , Yuan, Z. , Li, X. , Zhang, H. , and Vankelecom, I. F. J. , 2016, “ Advanced Charged Sponge-Like Membrane With Ultrahigh Stability and Selectivity for Vanadium Flow Batteries,” Adv. Funct. Mater., 26(2), pp. 210–218. [CrossRef]
Zhao, Y. , Lu, W. , Yuan, Z. , Qiao, L. , Li, X. , and Zhang, H. , 2017, “ Advanced Charged Porous Membranes With Flexible Internal Crosslinking Structures for Vanadium Flow Batteries,” J. Mater. Chem. A, 5(13), pp. 6193–6199. [CrossRef]
Maurya, S. , Shin, S. H. , Lee, J. Y. , Kim, Y. , and Moon, S. H. , 2016, “ Amphoteric Nanoporous Polybenzimidazole Membrane With Extremely Low Crossover for a Vanadium Redox Flow Battery,” RSC Adv., 6(7), pp. 5198–5204. [CrossRef]
Luo, T. , David, O. , Gendel, Y. , and Wessling, M. , 2016, “ Porous Poly(Benzimidazole) Membrane for All Vanadium Redox Flow Battery,” J. Power Sources, 312, pp. 45–54. [CrossRef]
Kangro, W. , and Pieper, H. , 1962, “ Zur Frage der Speicherung von Elektrischer Energie in Flüssigkeiten,” Electrochim. Acta, 7(4), pp. 435–448. [CrossRef]
Koros, W. J. , Ma, Y. H. , and Shimidzu, T. , 1996, “ Terminology for Membranes and Membrane Processes,” J. Membr. Sci., 120(2), pp. 149–159. [CrossRef]
Nagarjuna, G. , Hui, J. , Cheng, K. J. , Lichtenstein, T. , Shen, M. , Moore, J. S. , and Rodríguez-López, J. , 2014, “ Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents,” J. Am. Chem. Soc., 136(46), pp. 16309–16316. [CrossRef] [PubMed]
Janoschka, T. , Martin, N. , Martin, U. , Friebe, C. , Morgenstern, S. , Hiller, H. , Hager, M. D. , and Schubert, U. S. , 2015, “ An Aqueous, Polymer-Based Redox-Flow Battery Using Non-Corrosive, Safe, and Low-Cost Materials,” Nature, 527(7576), pp. 78–81. [CrossRef] [PubMed]
Zhang, H. , Zhang, H. , Li, X. , Mai, Z. , and Zhang, J. , 2011, “ Nanofiltration (NF) Membranes: The Next Generation Separators for All Vanadium Redox Flow Batteries (VRBs)?,” Energy Environ. Sci., 4(5), pp. 1676–1679. [CrossRef]
Zhang, H. , Zhang, H. , and, Li, X. , 2013, “ Nanofiltration Membranes for Vanadium Flow Battery Application,” ECS Trans., 53(7), pp. 65–68. [CrossRef]
Chae, I. S. , Luo, T. , Moon, G. H. , Ogieglo, W. , Kang, Y. S. , and Wessling, M. , 2016, “ Ultra-High Proton/Vanadium Selectivity for Hydrophobic Polymer Membranes With Intrinsic Nanopores for Redox Flow Battery,” Adv. Energy Mater., 6(16), p. 1600517. [CrossRef]
Budd, P. M. , Elabas, E. S. , Ghanem, B. S. , Maakhseed, S. , McKeown, N. B. , Msayib, K. J. , Tattershall, C. E. , and Wang, D. , 2004, “ Solution-Processed, Organophilic Membrane Derived From a Polymer of Intrinsic Microporosity,” Adv. Mater., 16(5), pp. 456–459. [CrossRef]
Du, N. , Robertson, G. P. , Song, J. , Pinnau, I. , and Guiver, M. D. , 2009, “ High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) With Tunable Gas Transport Properties,” Macromolecules, 42(16), pp. 6038–6043. [CrossRef]
Kim, B. G. , Henkensmeier, D. , Kim, H. J. , Jang, H. J. , Nam, S. W. , and Lim, T. H. , 2014, “ Sulfonation of PIM-1: Towards Highly Oxygen Permeable Binders for Fuel Cell Application,” Macromol. Res., 22(1), pp. 92–98. [CrossRef]
Hsu, W. Y. , and Gierke, T. D. , 1983, “ Ion Transport and Clustering in Nafion Perfluorinated Membranes,” J. Membr. Sci., 13(3), pp. 307–326. [CrossRef]
Coury, L. , 1999, “ Conductance Measurements—Part 1: Theory,” Curr. Sep., 18, pp. 91–96.
Jeong, S. , Kim, L. , Kwon, Y. , and Kim, S. , 2014, “ Effect of Nafion Membrane Thickness on Performance of Vanadium Redox Flow Battery,” Korean J. Chem. Eng., 31(11), pp. 2081–2087. [CrossRef]
Jiang, B. , Wu, L. , Yu, L. , Qiu, X. , and Xi, J. , 2016, “ A Comparative Study of Nafion Series Membranes for Vanadium Redox Flow Batteries,” J. Membr. Sci., 510, pp. 18–26. [CrossRef]
Jiang, B. , Yu, L. , Wu, L. , Mu, D. , Liu, L. , Xi, J. , and Qiu, X. , 2016, “ Insights Into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance,” ACS Appl. Mater. Interfaces, 8(19), pp. 12228–12238. [CrossRef] [PubMed]
Henkensmeier, D. , and Gubler, L. , 2014, “ Shape Memory Effect in Radiation Grafted Ion Exchange Membranes,” J. Mater. Chem. A, 2(25), pp. 9482–9485. [CrossRef]
Hink, S. , Henkensmeier, D. , Jang, J. H. , Kim, H. J. , Han, J. , and Nam, S. W. , 2015, “ Reduced In-Plane Swelling of Nafion by a Biaxial Modification Process,” Macromol. Chem. Phys., 216(11), pp. 1235–1243. [CrossRef]
Moore, R. B. , and Martin, C. R. , 1988, “ Chemical and Morphological Properties of Solution-Cast Perfluorosulfonate Ionomers,” Macromolecules, 21(5), pp. 1334–1339. [CrossRef]
Li, J. , Yang, X. , Tang, H. , and Pan, M. , 2010, “ Durable and High Performance Nafion Membrane Prepared Through High-Temperature Annealing Methodology,” J. Membr. Sci., 361(1–2), pp. 38–42. [CrossRef]
Kim, Y. S. , Welch, C. F. , Hjelm, R. P. , Mack, N. H. , Labouriau, A. , and Orler, E. B. , 2015, “ Origin of Toughness in Dispersion-Cast Nafion Membranes,” Macromolecules, 48(7), pp. 2161–2172. [CrossRef]
Roy, A. , Lee, H. S. , and McGrath, J. E. , 2008, “ Hydrophilic–Hydrophobic Multiblock Copolymers Based on Poly(Arylene Ether Sulfone)s as Novel Proton Exchange Membranes—Part B,” Polymer, 49(23), pp. 5037–5044. [CrossRef]
Yang, S. , Ahn, Y. , and Kim, D. , 2017, “ Poly(Arylene Ether Ketone) Proton Exchange Membranes Grafted With Long Aliphatic Pendant Sulfonated Groups for Vanadium Redox Flow Batteries,” J. Mater. Chem. A, 5(5), pp. 2261–2270. [CrossRef]
Gindt, B. P. , Tang, Z. , Watkins, D. L. , Abebe, D. G. , Seo, S. , Tuli, S. , Ghassemi, H. , Zawodzinski, T. A. , and Fujiwara, T. , 2017, “ Effects of Sulfonated Side Chains Used in Polysulfone Based PEMs for VRFB Separator,” J. Membr. Sci., 532, pp. 58–67. [CrossRef]
Jung, H. Y. , Jeong, S. , and Kwon, Y. , 2016, “ The Effects of Different Thick Sulfonated Poly (Ether Ether Ketone) Membranes on Performance of Vanadium Redox Flow Battery,” J. Electrochem. Soc., 163(1), pp. A5090–A5096. [CrossRef]
Xi, J. , Li, Z. , Yu, L. , Yin, B. , Wang, L. , Liu, L. , Qiu, X. , and Chen, L. , 2015, “ Effect of Degree of Sulfonation and Casting Solvent on Sulfonated Poly(Ether Ether Ketone) Membrane for Vanadium Redox Flow Battery,” J. Power Sources, 285, pp. 195–204. [CrossRef]
Kreuer, K. D. , 2001, “ On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells,” J. Membr. Sci., 185(1), pp. 29–39. [CrossRef]
Vijayakumar, M. , Luo, Q. , Lloyd, R. , Nie, Z. , Wei, X. , Li, B. , Sprenkle, V. , Londono, J.-D. , Unlu, M. , and Wang, W. , 2016, “ Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries,” ACS Appl. Mater. Interfaces, 8(50), pp. 34327–34334. [CrossRef] [PubMed]
Chromik, A. , dosSantos, A. R. , Turek, T. , Kunz, U. , Häring, T. , and Kerres, J. , 2015, “ Stability of Acid-Excess Acid–Base Blend Membranes in All-Vanadium Redox-Flow Batteries,” J. Membr. Sci., 476, pp. 148–155. [CrossRef]
Nambi, K. N. , Henkensmeier, D. , Jang, J. H. , and Kim, H.-J. , 2014, “ Nanocomposite Membranes for Polymer Electrolyte Fuel Cells,” Macromol. Mater. Eng., 299(9), pp. 1031–1041.
Yin, B. , Yu, L. , Jiang, B. , Wang, L. , and Xi, J. , 2016, “ Nano Oxides Incorporated Sulfonated Poly(Ether Ether Ketone) Membranes With Improved Selectivity and Stability for Vanadium Redox Flow Battery,” J. Solid State Electrochem., 20(5), pp. 1271–1283. [CrossRef]
Chen, D. , and Hickner, M. A. , 2013, “ V5+ Degradation of Sulfonated Radel Membranes for Vanadium Redox Flow Batteries,” Phys. Chem. Chem. Phys., 15(27), pp. 11299–11305. [CrossRef] [PubMed]
Kim, S. , Tighe, T. B. , Schwenzer, B. , Yan, J. , Zhang, J. , Liu, J. , Yang, Z. , and Hickner, M. A. , 2011, “ Chemical and Mechanical Degradation of Sulfonated Poly(Sulfone) Membranes in Vanadium Redox Flow Batteries,” J. Appl. Electrochem., 41(10), pp. 1201–1213. [CrossRef]
Huang, S. L. , Yu, H. F. , and Lin, Y. S. , 2017, “ Modification of Nafion Membrane Via a Sol-Gel Route for Vanadium Redox Flow Energy Storage Battery Applications,” J. Chem., 2017, p. 4590952. [CrossRef]
Yu, L. , Lin, F. , Xu, L. , and Xi, J. , 2016, “ A Recast Nafion/Graphene Oxide Composite Membrane for Advanced Vanadium Redox Flow Batteries,” RSC Adv., 6(5), pp. 3756–3763. [CrossRef]
Hu, S. , Lozada-Hidalgo, M. , Wang, F. C. , Mishchenko, A. , Schedin, F. , Nair, R. R. , Hill, E. W. , Boukhvalov, D. W. , Katsnelson, M. I. , Dryfe, R. A. W. , Wu, H. A. , and Geim, A. K. , 2014, “ Proton Transport Through One-Atom-Thick Crystals,” Nature, 516(7530), pp. 227–230. [CrossRef] [PubMed]
Grosse Austing, J. , Kirchner, C. N. , Komsiyska, L. , and Wittstock, G. , 2016, “ Layer-by-Layer Modification of Nafion Membranes for Increased Lifetime and Efficiency of Vanadium/Air Redox Flow Batteries,” J. Membr. Sci., 510, pp. 259–269. [CrossRef]
Ma, J. , Wang, S. , Peng, J. , Yuan, J. , Yu, C. , Li, J. , Ju, X. , and Zhai, M. , 2013, “ Covalently Incorporating a Cationic Charged Layer Onto Nafion Membrane by Radiation-Induced Graft Copolymerization to Reduce Vanadium Ion Crossover,” Eur. Polym. J., 49(7), pp. 1832–1840. [CrossRef]
Mortensen, K. , Gasser, U. , Alkan, G. S. , and Scherer, G. G. , 2008, “ Structural Characterization of Radiation-Grafted Block Copolymer Films, Using SANS Technique,” J. Polym. Sci., 46(16), pp. 1660–1668. [CrossRef]
Nibel, O. , Schmidt, T. J. , and Gubler, L. , 2016, “ Bifunctional Ion-Conducting Polymer Electrolyte for the Vanadium Redox Flow Battery With High Selectivity,” J. Electrochem. Soc., 163(13), pp. A2563–A2570. [CrossRef]
Nibel, O. , Bon, M. , Agiorousis, M. L. , Laino, T. , and Gubler, L. , 2017, “ Unraveling the Interaction Mechanism Between Amidoxime Groups and Vanadium Ions at Various pH Conditions,” J. Phys. Chem. C, 121(12), pp. 6436–6445. [CrossRef]
Chen, D. , Hickner, M. A. , Agar, E. , and Kumbur, E. C. , 2013, “ Selective Anion Exchange Membranes for High Coulombic Efficiency Vanadium Redox Flow Batteries,” Electrochem. Commun., 26, pp. 37–40. [CrossRef]
Yun, S. , Parrondo, J. , and Ramani, V. , 2015, “ A Vanadium–Cerium Redox Flow Battery With an Anion-Exchange Membrane Separator,” ChemPlusChem, 80(2), pp. 412–421. [CrossRef]
Marino, M. G. , and Kreuer, K. D. , 2015, “ Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids,” ChemSusChem, 8(3), pp. 513–523. [CrossRef] [PubMed]
Merle, G. , Wessling, M. , and Nijmeijer, K. , 2011, “ Anion Exchange Membranes for Alkaline Fuel Cells: A Review,” J. Membr. Sci., 377(1–2), pp. 1–35. [CrossRef]
Zhang, B. , Zhang, E. , Wang, G. , Yu, P. , Zhao, Q. , and Yao, F. , 2015, “ Poly(Phenyl Sulfone) Anion Exchange Membranes With Pyridinium Groups for Vanadium Redox Flow Battery Applications,” J. Power Sources, 282, pp. 328–334. [CrossRef]
Xu, W. , Zhao, Y. , Yuan, Z. , Li, X. , Zhang, H. , and Vankelecom, I. F. J. , 2015, “ Highly Stable Anion Exchange Membranes With Internal Cross-Linking Networks,” Adv. Funct. Mater., 25(17), pp. 2583–2589. [CrossRef]
Zeng, L. , Zhao, T. S. , Wei, L. , Zeng, Y. K. , and Zhang, Z. H. , 2016, “ Highly Stable Pyridinium-Functionalized Cross-Linked Anion Exchange Membranes for All Vanadium Redox Flow Batteries,” J. Power Sources, 331, pp. 452–461. [CrossRef]
Lu, D. , Wen, L. , Nie, F. , and Xue, L. , 2016, “ Synthesis and Investigation of Imidazolium Functionalized Poly(Arylene Ether Sulfone)s as Anion Exchange Membranes for All-Vanadium Redox Flow Batteries,” RSC Adv., 6(8), pp. 6029–6037. [CrossRef]
Arges, C. G. , and Ramani, V. , 2013, “ Two-Dimensional NMR Spectroscopy Reveals Cation-Triggered Backbone Degradation in Polysulfone-Based Anion Exchange Membranes,” Proc. Natl. Acad. Sci. U.S.A., 110(7), pp. 2490–2495. [CrossRef] [PubMed]
Yuan, Z. , Li, X. , Zhao, Y. , and Zhang, H. , 2015, “ Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery,” ACS Appl. Mater. Interfaces, 7(34), pp. 19446–19454. [CrossRef] [PubMed]
Zhang, B. , Zhang, S. , Weng, Z. , Wang, G. , Zhang, E. , Yu, P. , Chen, X. , and Wang, X. , 2016, “ Quaternized Adamantane-Containing Poly(Aryl Ether Ketone) Anion Exchange Membranes for Vanadium Redox Flow Battery Applications,” J. Power Sources, 325, pp. 801–807. [CrossRef]
Sun, C. N. , Tang, Z. , Belcher, C. , Zawodzinski, T. A. , and Fujimoto, C. , 2014, “ Evaluation of Diels–Alder Poly(Phenylene) Anion Exchange Membranes in All-Vanadium Redox Flow Batteries,” Electrochem. Commun., 43, pp. 63–66. [CrossRef]
Pezeshki, A. M. , Tang, Z. J. , Fujimoto, C. , Sun, C. N. , Mench, M. M. , and Zawodzinski, T. A. , 2016, “ Full Cell Study of Diels Alder Poly(Phenylene) Anion and Cation Exchange Membranes in Vanadium Redox Flow Batteries,” J. Electrochem. Soc., 163(1), pp. A5154–A5162. [CrossRef]
Small, L. J. , Pratt, H. D., III , Fujimoto, C. H. , and Anderson, T. M. , 2016, “ Diels Alder Polyphenylene Anion Exchange Membrane for Nonaqueous Redox Flow Batteries,” J. Electrochem. Soc., 163(1), pp. A5106–A5111. [CrossRef]
Yun, S. , Parrondo, J. , and Ramani, V. , 2016, “ Composite Anion Exchange Membranes Based on Quaternized Cardo-Poly(Etherketone) and Quaternized Inorganic Fillers for Vanadium Redox Flow Battery Applications,” Int. J. Hydrogen Energy, 41(25), pp. 10766–10775. [CrossRef]
Li, Q. , Jensen, J. O. , Savinell, R. F. , and Bjerrum, N. J. , 2009, “ High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells,” Prog. Polym. Sci., 34(5), pp. 449–477. [CrossRef]
Asensio, J. A. , Sánchez, E. M. , and Gómez-Romero, P. , 2010, “ Proton-Conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells. A Chemical Quest,” Chem. Soc. Rev., 39(8), pp. 3210–3239. [CrossRef] [PubMed]
Eberhardt, S. H. , Toulec, M. , Marone, F. , Stampanoni, M. , Büchi, F. N. , and Schmidt, T. J. , 2015, “ Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (re)Distribution,” J. Electrochem. Soc., 162(3), pp. F310–F316. [CrossRef]
Zhou, X. L. , Zhao, T. S. , An, L. , Wei, L. , and Zhang, C. , 2015, “ The Use of Polybenzimidazole Membranes in Vanadium Redox Flow Batteries Leading to Increased Coulombic Efficiency and Cycling Performance,” Electrochim. Acta, 153, pp. 492–498. [CrossRef]
Jang, J. K. , Kim, T. H. , Yoon, S. J. , Lee, J. Y. , Lee, J. C. , and Hong, Y. T. , 2016, “ Highly Proton Conductive, Dense Polybenzimidazole Membranes With Low Permeability to Vanadium and Enhanced H2SO4 Absorption Capability for Use in Vanadium Redox Flow Batteries,” J. Mater. Chem. A, 4(37), pp. 14342–14355. [CrossRef]
Singh, B. , Duong, N. M. H. , Henkensmeier, D. , Jang, J. H. , Kim, H. J. , Han, J. , and Nam, S. W. , 2017, “ Influence of Different Side-Groups and Cross-Links on Phosphoric Acid Doped Radel-Based Polysulfone Membranes for High Temperature Polymer Electrolyte Fuel Cells,” Electrochim. Acta, 224, pp. 306–313. [CrossRef]
Xia, Z. , Ying, L. , Fang, J. , Du, Y. Y. , Zhang, W. M. , Guo, X. , and Yin, J. , 2017, “ Preparation of Covalently Cross-Linked Sulfonated Polybenzimidazole Membranes for Vanadium Redox Flow Battery Applications,” J. Membr Sci., 525, pp. 229–239. [CrossRef]
Chen, W. F. , Lin, H. Y. , and Dai, S. A. , 2004, “ Generation and Synthetic Uses of Stable 4-[2-Isopropylidene]-Phenol Carbocation From Bisphenol A,” Org. Lett., 6(14), pp. 2341–2343. [CrossRef] [PubMed]
Johnson, B. C. , Yilgör, I. , Tran, C. , Iqbal, M. , Wightman, J. P. , Lloyd, D. R. , and McGrath, J. E. , 1984, “ Synthesis and Characterization of Sulfonated Poly(Arylene Ether Sulfones),” J. Polym. Sci., 22(3), pp. 721–737.
Peng, S. , Yan, X. , Zhang, D. , Wu, X. , Luo, Y. , and He, G. , 2016, “ A H3PO4 Preswelling Strategy to Enhance the Proton Conductivity of a H2SO4-Doped Polybenzimidazole Membrane for Vanadium Flow Batteries,” RSC Adv., 6(28), pp. 23479–23488. [CrossRef]
Bartolozzi, M. , 1989, “ Development of Redox Flow Batteries. A Historical Bibliography,” J. Power Sources, 27(3), pp. 219–234. [CrossRef]
Sum, E. , and Skyllas-Kazacos, M. , 1985, “ A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications,” J. Power Sources, 15(2–3), pp. 179–190. [CrossRef]
Zhong, S. , and Skyllas-Kazacos, M. , 1992, “ Electrochemical Behavior of Vanadium(V)/Vanadium(IV) Redox Couple at Graphite Electrodes,” J. Power Sources, 39(1), pp. 1–9. [CrossRef]
Zhong, S. , Kazacos, M. , Burford, R. P. , and Skyllas-Kazacos, M. , 1991, “ Fabrication and Activation Studies of Conducting Plastic Composite Electrodes for Redox Cells,” J. Power Sources, 36(1), pp. 29–43. [CrossRef]
Kazacos, M. , and Skyllas-Kazacos, M. , 1989, “ Performance Characteristics of Carbon Plastic Electrodes in the All-Vanadium Redox Cell,” J. Electrochem. Soc., 136(9), pp. 2759–2760. [CrossRef]
Haddadi-Asl, V. , Kazacos, M. , and Skyllas-Kazacos, M. , 1995, “ Conductive Carbon-Polypropylene Composite Electrodes for Vanadium Redox Battery,” J. Appl. Electrochem., 25(1), pp. 29–33. [CrossRef]
Haddadi-Asl, V. , Kazacos, M. , and Skyllas-Kazacos, M. , 1995, “ Carbon–Polymer Composite Electrodes for Redox Cells,” J. Appl. Polym. Sci., 57(12), pp. 1455–1463. [CrossRef]
Radford, G. J. W. , Cox, J. , Wills, R. G. A. , and Walsh, F. C. , 2008, “ Electrochemical Characterization of Activated Carbon Particles Used in Redox Flow Battery Electrodes,” J. Power Sources, 185(2), pp. 1499–1504. [CrossRef]
Inoue, M. , Tsuzuki, Y. , Iizuka, Y. , and Shimada, M. , 1987, “ Carbon Fiber Electrode for Redox Flow Battery,” J. Electrochem. Soc., 134(3), pp. 756–757. [CrossRef]
Kaneko, H. , Nozaki, K. , Wada, Y. , Aoki, T. , Negishi, A. , and Kamimoto, M. , 1991, “ Vanadium Redox Reactions and Carbon Electrodes for Vanadium Redox Flow Battery,” Electrochim. Acta, 36(7), pp. 1191–1196. [CrossRef]
Xi, J. , Zenghua, W. , Qiu, X. , and Chen, L. , 2007, “ Nafion/SiO2 Hybride Membrane for Vanadium Redox Flow Battery,” J. Power Sources, 166(2), pp. 531–536. [CrossRef]
Mohammadi, F. , Timbrell, P. , Zhong, S. , Padeste, C. , and Skyllas-Kazacos, M. , 1994, “ Overcharge in the Vanadium Redox Battery and Changes in Electrical Resistivity and Surface Functionality of Graphite-Felt Electrodes,” J. Power Sources, 52(1), pp. 61–68. [CrossRef]
Shao, Y. , Wang, X. , Engelhard, M. , Wang, C. , Dai, S. , Liu, J. , Yang, Z. , and Lin, Y. , 2010, “ Nitrogen-Doped Mesoporous Carbon for Energy Storage in Vanadium Redox Flow Batteries,” J. Power Sources, 195(13), pp. 4375–4379. [CrossRef]
Sun, B. , and Skyllas-Kazacos, M. , 1992, “ Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—Part II: Acid Treatments,” Electrochim. Acta, 37(13), pp. 2459–2465. [CrossRef]
Sun, B. , and Skyllas-Kazacos, M. , 1992, “ Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—I: Thermal Treatment,” Electrochim. Acta, 37(7), pp. 1253–1260. [CrossRef]
Sun, B. , and Skyllas-Kazacos, M. , 1991, “ Chemical Modification and Electrochemical Behaviour of Graphite Fibre in Acidic Vanadium Solution,” Electrochim. Acta, 36(3–4), pp. 513–517. [CrossRef]
Rychcik, M. , and Skyllas-Kazacos, M. , 1987, “ Evaluation of Electrode Materials for Vanadium Redox Cell,” J. Power Sources, 19(1), pp. 45–54. [CrossRef]
Zhong, S. , Padeste, C. , Kazacos, M. , and Skyllas-Kazacos, M. , 1993, “ Comparison of the Physical, Chemical and Electrochemical Properties of Rayon- and Polyacrylonitrile-Based Graphite Felt Electrodes,” J. Power Sources, 45(1), pp. 29–41. [CrossRef]
Kim, K. J. , Park, M. S. , Kim, Y. J. , Kim, J. H. , Dou, S. X. , and Skyllas-Kazacos, M. , 2015, “ A Technology Review of Electrodes and Reaction Mechanisms in Vanadium Redox Flow Batteries,” J. Mater. Chem. A, 3(33), pp. 16913–16933. [CrossRef]
de Leon, C. P. , Frias-Ferrer, A. , Gonzalez-Garcia, J. , Szanto, D. , and Walsh, F. , 2006, “ Redox Flow Cells for Energy Conversion,” J. Power Sources, 160(1), pp. 716–732. [CrossRef]
Skyllas-Kazacos, M. , Chakrabarti, M. H. , Hajimolana, S. A. , Mjalli, F. S. , and Saleem, M. , 2011, “ Progress in Flow Battery Research and Development,” J. Electrochem. Soc., 158(8), pp. 55–79. [CrossRef]
Skyllas-Kazacos, M. , Rychcik, M. , Robins, R. G. , Fane, A. G. , and Green, M. A. , 1986, “ New All-Vanadium Redox Flow Cell,” J. Electrochem. Soc., 133(5), pp. 1057–1058. [CrossRef]
Yang, Z. , Zhang, J. , Kintner-Meyer, M. C. W. , Lu, X. , Choi, D. , Lemmon, J. P. , and Liu, J. , 2011, “ Electrochemical Energy Storage for Green Grid,” Chem. Rev., 111(5), pp. 3577–3613. [CrossRef] [PubMed]
Li, W. W. , Chu, Y. Q. , and Ma, C. A. , 2014, “ Highly Hydroxylated Graphite Felts Used as Electrodes for a Vanadium Redox Flow Battery,” Adv. Mater. Res., 936, pp. 471–475. [CrossRef]
Li, X. G. , Huang, K. L. , Liu, S. Q. , Tan, N. , and Chen, L. Q. , 2007, “ Characteristics of Graphite Felt Electrode Electrochemically Oxidized for Vanadium Redox Battery Application,” Trans. Nonferrous Met. Soc. China, 17(1), pp. 195–199. [CrossRef]
Tan, N. , Huang, K. L. , Liu, S. Q. , Li, X. G. , and Chang, Z. F. , 2006, “ Activation Mechanism Study of Electrochemical Treated Graphite Felt for Vanadium Redox Cell by Electrochemical Impedance Spectrum,” Acta Chim. Sin., 64(6), pp. 584–588.
Zhang, W. , Xi, J. , Li, Z. , Zhou, H. , Liu, L. , Wu, Z. , and Qiu, X. , 2013, “ Electrochemical Activation of Graphite Felt Electrode for VO2+/VO2+ Redox Couple Application,” Electrochim. Acta, 89, pp. 429–435. [CrossRef]
Wang, W. H. , and Wang, W. D. , 2007, “ Investigation of Ir-Modified Carbon Felt as the Positive Electrode of an All-Vanadium Redox Flow Battery,” Electrochim. Acta, 52(24), pp. 6755–6762. [CrossRef]
Jeong, S. , Kim, S. , and Kwon, Y. , 2013, “ Performance Enhancement in Vanadium Redox Flow Battery Using Platinum-Based Electrocatalyst Synthesized by Polyol Process,” Electrochim. Acta, 114, pp. 439–447. [CrossRef]
González, Z. , Sánchez, A. , Blanco, C. , Granda, M. , Menéndez, R. , and Santanmaría, R. , 2011, “ Enhanced Performance of a Bi-Modified Graphite Felt as the Positive Electrode of a Vanadium Redox Flow Battery,” Electrochem. Commun., 13(12), pp. 1379–1382. [CrossRef]
Suárez, D. J. , González, Z. , Blanco, C. , Granda, M. , Menéndez, R. , and Santamaría, R. , 2014, “ Graphite Felt Modified With Bismuth Nanoparticles as Negative Electrode in a Vanadium Redox Flow Battery,” ChemSusChem, 7(3), pp. 914–918. [CrossRef] [PubMed]
Kim, K. J. , Park, M. S. , Kim, J. H. , Hwang, U. , Lee, N. J. , Jeong, G. , and Kim, Y. J. , 2012, “ Novel Catalytic Effects of Mn3O4 for All Vanadium Redox Flow Batteries,” Chem. Commun., 48(44), pp. 5455–5457. [CrossRef]
Li, B. , Gu, M. , Nie, Z. , Wei, X. L. , Wang, C. M. , Sprenkle, V. , and Wang, W. , 2014, “ Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery,” Nano Lett., 14(1), pp. 158–165. [CrossRef] [PubMed]
Tseng, T. M. , Huang, R. H. , Huang, G. Y. , Hsueh, K. L. , and Shieu, F. S. , 2013, “ Improvement of Titanium Dioxide Addition on Carbon Black Composite for Negative Electrode in Vanadium Redox Flow Battery,” J. Electrochem. Soc., 160(8), pp. A1269–A1275. [CrossRef]
Wu, X. X. , Xu, H. F. , Lu, L. , Zhao, H. , Fu, J. , Shen, Y. , Xu, P. C. , and Dong, Y. M. , 2014, “ PbO2-Modified Graphite Felt as the Positive Electrode for an All-Vanadium Redox Flow Battery,” J. Power Sources, 250, pp. 274–278. [CrossRef]
Zhou, H. , Xi, J. G. , Li, Z. H. , Zhang, Z. G. , Yu, L. H. , Liu, L. , Qiu, X. P. , and Chen, L. Q. , 2014, “ CeO2 Decorated Graphite Felt as a High-Performance Electrode for Vanadium Redox Flow Batteries,” RSC Adv., 4(106), pp. 61912–61918. [CrossRef]
Wang, X. , Li, W. Z. , Chen, Z. W. , Waje, M. H. , and Yan, Y. S. , 2006, “ Durability Investigation of Carbon Nanotube as Catalyst Support for Proton Exchange Membrane Fuel Cell,” J. Power Sources, 158(1), pp. 154–159. [CrossRef]
Jha, N. , Leela, A. , Reddy, M. , Shaijumoon, M. M. , Rajalakshmi, N. , and Ramaprabhu, S. , 2008, “ Pt–Ru/Multi-Walled Carbon Nanotubes as Electrocatalysts for Direct Methanol Fuel Cell,” Int. J. Hydrogen Energy, 33(1), pp. 427–433. [CrossRef]
Mohanareddy, A. , Rajalakshmi, N. , and Ramaprabhu, S. , 2008, “ Cobalt-Polypyrrole-Multiwalled Carbon Nanotube Catalysts for Hydrogen and Alcohol Fuel Cells,” Carbon, 46(1), pp. 2–11. [CrossRef]
Saha, M. S. , Li, R. , and Sun, X. , 2008, “ High Loading and Monodispersed Pt Nanoparticles on Multiwalled Carbon Nanotubes for High Performance Proton Exchange Membrane Fuel Cells,” J. Power Sources, 177(2), pp. 314–322. [CrossRef]
Zhu, H. Q. , Zhang, Y. M. , Yue, L. , Li, W. S. , Li, G. L. , Shu, D. , and Chen, H. Y. , 2008, “ Graphite–Carbon Nanotube Composite Electrodes for All Vanadium Redox Flow Battery,” J. Power Sources, 184(2), pp. 637–640. [CrossRef]
Li, W. Y. , Liu, J. G. , and Yan, C. W. , 2011, “ Multi-Walled Carbon Nanotubes Used as an Electrode Reaction Catalyst for VO2+/VO2+ for a Vanadium Redox Flow Battery,” Carbon, 49(11), pp. 3463–3470. [CrossRef]
Maldonado, S. , and Stevenson, K. J. , 2005, “ Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes,” J. Phys. Chem. B, 109(10), pp. 4707–4716. [CrossRef] [PubMed]
Shao, Y. , Sui, J. , Yin, G. , and Gao, Y. , 2008, “ Nitrogen-Doped Carbon Nanostructures and Their Composites as Catalytic Materials for Proton Exchange Membrane Fuel Cell,” Appl. Catal., B, 79(1), pp. 89–99. [CrossRef]
Gong, K. , Du, F. , Xia, Z. , Durstock, M. , and Dai, L. , 2009, “ Nitrogen-Doped Carbon Nanotube Arrays With High Electrocatalytic Activity for Oxygen Reduction,” Science, 323(5915), pp. 760–764. [CrossRef] [PubMed]
Sidik, R. A. , Anderson, A. B. , Subramanian, N. P. , Kumaraguru, S. P. , and Popov, B. N. , 2006, “ O2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory,” J. Phys. Chem. B, 110(4), pp. 1787–1793. [CrossRef] [PubMed]
Wu, G. , Li, D. , Dai, C. , Wang, D. , and Li, N. , 2008, “ Well-Dispersed High-Loading Pt Nanoparticles Supported by Shell−Core Nanostructured Carbon for Methanol Electrooxidation,” Langmuir, 24(7), pp. 3566–3575. [CrossRef] [PubMed]
Saha, M. S. , Li, R. , Sun, X. , and Ye, S. , 2009, “ 3-D Composite Electrodes for High Performance PEM Fuel Cells Composed of Pt Supported on Nitrogen-Doped Carbon Nanotubes Grown on Carbon Paper,” Electrochem. Commun., 11(2), pp. 438–441. [CrossRef]
Shi, L. , Gao, Q. , and Wu, Y. , 2009, “ High Performance Oxide Functionalized Nitrogen-Doped Mesocellular Carbon Foam for Biosensor Construction,” Electroanalysis, 21(6), pp. 715–722. [CrossRef]
Wo, T. , Huang, K. L. , Liu, S. Q. , Zhung, S. X. , Fang, D. , Li, S. , Lu, D. , and Su, A. Q. , 2012, “ Hydrothermal Ammoniated Treatment of PAN-Graphite Felt for Vanadium Redox Flow Battery,” J. Solid State Electrochem., 16(2), pp. 579–585. [CrossRef]
Wang, S. G. , Zhao, X. S. , Cochell, T. , and Manthiram, A. , 2012, “ Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries,” J. Phys. Chem. Lett., 3(16), pp. 2164–2167. [CrossRef] [PubMed]
Jin, J. T. , Fu, X. G. , Liu, Q. , Liu, Y. R. , Wei, Z. Y. , Niu, K. X. , and Zhang, J. Y. , 2013, “ Identifying the Active Site in Nitrogen-Doped Graphene for the VO2+/VO2+ Redox Reaction,” ACS Nano, 7(6), pp. 4764–4773. [CrossRef] [PubMed]
Park, M. J. , Ryu, J. C. , Kim, Y. S. , and Cho, J. , 2014, “ Corn Protein-Derived Nitrogen-Doped Carbon Materials With Oxygen-Rich Functional Groups: A Highly Efficient Electrocatalyst for All-Vanadium Redox Flow Batteries,” Energy Environ. Sci., 7(11), pp. 3727–3735. [CrossRef]
Ulaganathan, M. , Jain, A. , Aravindan, V. , Jayaraman, S. , Ling, W. C. , Lim, T. M. , Srinivasan, M. P. , Yan, Q. , and Madhavi, S. , 2015, “ Bio-Mass Derived Mesoporous Carbon as Superior Electrode in All Vanadium Redox Flow Battery With Multicouple Reactions,” J. Power Sources, 274, pp. 846–850. [CrossRef]
Park, J. J. , Park, J. H. , Park, O. O. , and Yang, J. H. , 2016, “ Highly Porous Graphenated Graphite Felt Electrodes With Catalytic Defects for High-Performance Vanadium Redox Flow Batteries Produced Via NiO/Ni Redox Reactions,” Carbon, 110, pp. 17–26. [CrossRef]
González, Z. , Flox, C. , Blanco, C. , Granda, M. , Morante, J. R. , Menéndez, R. , and Santanmaría, R. , 2017, “ Outstanding Electrochemical Performance of a Graphene-Modified Graphite Felt for Vanadium Redox Flow Battery Application,” J. Power Sources, 338, pp. 155–162. [CrossRef]
Blasi, A. D. , Busaccaa, C. , Blasia, O. D. , Briguglioa, N. , Squadritoa, G. , and Antonuccia, V. , 2017, “ Synthesis of Flexible Electrodes Based on Electrospun Carbon Nanofibers With Mn3O4 Nanoparticles for Vanadium Redox Flow Battery Application,” Appl. Energy, 190, pp. 165–171. [CrossRef]
Busacca, C. , Blasi, O. D. , Briguglio, N. , Ferraro, M. , Antonucci, V. , and Blasi, A. D. , 2017, “ Electrochemical Performance Investigation of Electrospun Urchin-Like V2O3-CNF Composite Nanostructure for Vanadium Redox Flow Battery,” Electrochim. Acta, 230, pp. 174–180. [CrossRef]
Bhattarai, A. , Wai, N. , Schweiss, R. , Whitehead, A. , Lim, T. M. , and Hug, H. H. , 2017, “ Advanced Porous Electrodes With Flow Channels for Vanadium Redox Flow Battery,” J. Power Sources, 341, pp. 83–90. [CrossRef]
Winsberg, J. , Hagemann, T. , Janoschka, T. , Hager, M. , and Schubert, U. S. , 2017, “ Redox-Flow Batteries: From Metals to Organic Redox-Active Materials,” Angew. Chem. Int. Ed., 56(3), pp. 686–711. [CrossRef]
Jeftic, L. , and Manning, G. , 1970, “ A Survey on the Electrochemical Reduction of Quinones,” J. Electroanal. Chem., 26(2–3), pp. 195–200. [CrossRef]
Ji, X. , Banks, C. E. , Silvester, D. S. , Wain, A. J. , and Compton, R. G. , 2007, “ Electrode Kinetic Studies of the Hydroquinone-Benzoquinone System and the Reaction Between Hydroquinone and Ammonia in Propylene Carbonate: Application to the Indirect Electroanalytical Sensing of Ammonia,” J. Phys. Chem. C, 111(3), pp. 1496–1504. [CrossRef]
René, A. , and Evans, D. H. , 2012, “ Electrochemical Reduction of Some o-Quinone Anion Radicals: Why Is the Current Intensity So Small?,” J. Phys. Chem. C, 116(27), pp. 14454–14460. [CrossRef]
Xu, Y. , Wen, Y. , Cheng, J. , Cao, G. , and Yang, Y. , 2009, “ Study on a Single Flow Acid Cd-Chloranil Battery,” Electrochem. Commun., 11(7), pp. 1422–1424. [CrossRef]
Xu, Y. , Wen, Y. , Cheng, J. , Cao, G. , and Yang, Y. , 2010, “ A Study of Tiron in Aqueous Solutions for Redox Flow Battery Application,” Electrochim. Acta, 55(3), pp. 715–720. [CrossRef]
Papouchado, L. , Petrie, G. , and Adams, R. N. , 1972, “ Anodic Oxidation Pathways of Phenolic Compounds—Part I: Anodic Hydroxylation Reactions,” J. Electroanal. Chem., 38(2), pp. 389–395. [CrossRef]
Hoober-Burkhardt, L. , Krishnamoorthy, S. , Yang, B. , Murali, A. , Nirmalchandar, A. , Surya Prakash, G. K. , and Narayanan, S. R. , 2017, “ A New Michael-Reaction-Resistant Benzoquinone for Aqueous Organic Redox Flow Batteries,” J. Electrochem. Soc., 164(4), pp. A600–A607. [CrossRef]
Yang, B. , Hoober-Burkhardt, L. , Krishnamoorthy, S. , Murali, A. , Surya Prakash, G. K. , and Narayanan, S. R. , 2016, “ High-Performance Aqueous Organic Flow Battery With Quinone-Based Redox Couples at Both Electrodes,” J. Electrochem. Soc., 163(7), pp. A1442–A1449. [CrossRef]
Yang, B. , Hoober-Burkhardt, L. , Wang, F. , Surya Prakash, G. K. , and Narayanan, S. R. , 2014, “ An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples,” J. Electrochem. Soc., 161(9), pp. A1371–A1380. [CrossRef]
Song, Z. , Zhan, H. , and Zhou, Y. , 2009, “ Anthraquinone Based Polymer as High Performance Cathode Material for Rechargeable Lithium Batteries,” Chem. Commun., 2009(4), pp. 448–450. [CrossRef]
Zhao, L. , Wang, W. , Wang, A. , Yu, Z. , Chen, S. , and Yang, Y. , 2011, “ A MC/AQ Parasitic Composite as Cathode Material for Lithium Battery,” J. Electrochem. Soc., 158(9), pp. A991–A996. [CrossRef]
Guin, P. S. , Das, S. , and Mandal, P. C. , 2011, “ Electrochemical Reduction of Quinones in Different Media: A Review,” Int. J. Electrochem., 2011, p. 816202.
Er, S. , Suh, C. , Marshak, M. P. , and Aspuru-Guzik, A. , 2015, “ Computational Design of Molecules for All-Quinone Redox Flow Battery,” Chem. Sci., 6(2), pp. 885–893. [CrossRef]
Wang, W. , Xu, W. , Cosimbescu, L. , Choi, D. , Li, L. , and Yang, Z. , 2012, “ Anthraquinone With Tailored Structure for a Nonaqueous Metal-Organic Redox Flow Battery,” Chem. Commun., 48(53), pp. 6669–6671. [CrossRef]
Huskinson, B. , Marshak, M. P. , Suh, C. , Er, S. , Gerhardt, M. R. , Galvin, C. J. , Chen, X. , Aspuru-Guzik, A. , Gordon, R. G. , and Aziz, M. J. , 2014, “ A Metal-Free Organic-Inorganic Aqueous Flow Battery,” Nature, 505(7482), pp. 195–198. [CrossRef] [PubMed]
Zhang, S. , Li, X. , and Chu, D. , 2016, “ An Organic Electroactive Material for Flow Batteries,” Electrochim. Acta, 190, pp. 737–743. [CrossRef]
Lin, K. , Chen, Q. , Gerhardt, M. R. , Tong, L. , Kim, S. B. , Eisenach, L. , Valle, A. W. , Hardee, D. , Gordon, R. G. , Aziz, M. J. , and Marshak, M. P. , 2015, “ Alkaline Quinone Flow Battery,” Science, 349(6255), pp. 1529–1532. [CrossRef] [PubMed]
Michaelis, L. , and Hill, E. S. , 1933, “ The Viologen Indicators,” J. Gen. Physiol., 16(6), pp. 859–873. [CrossRef] [PubMed]
Bird, C. L. , and Kuhn, A. T. , 1981, “ Electrochemistry of the Viologens,” Chem. Soc. Rev., 10(1), pp. 49–82. [CrossRef]
Farrington, J. A. , Ledwith, A. , and Stam, M. F. , 1969, “ Cation-Radicals: Oxidation of Methoxide ion With 1,1′-Dimethyl-4,4′-Bipyriylium Dichloride (Paraquat Dichloride),” J. Chem. Soc. D, 6, p. 259. [CrossRef]
Ito, M. , and Kuwana, T. , 1971, “ Spectroelectrochemical Study of Indirect Reduction of Triphosphopyridine Nucleotide—I: Methyl Viologen, Ferredoxin-TPN-Reductase and TPN,” J. Electroanal. Chem., 32(3), pp. 415–425. [CrossRef]
Haley, T. J. , 1979, “ Review of the Toxicology of Paraquat (1,1′-Dimethyl-4,4′-Bipyridinium Chloride),” Clin. Toxicol., 14(1), pp. 1–46. [CrossRef] [PubMed]
Liu, T. , Wie, X. , Nie, Z. , Sprenkle, V. , and Wang, W. , 2016, “ A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte,” Adv. Energy Mater., 6(3), p. 1501449. [CrossRef]
Janoschka, T. , Martin, N. , Hager, M. D. , and Schubert, U. S. , 2016, “ An Aqueous Redox-Flow Battery With High Capacity and Power: The TEMPTMA/MV System,” Angew. Chem. Int. Ed., 55(46), pp. 14427–14430. [CrossRef]
Janoschka, T. , Hager, M. D. , and Schubert, U. S. , 2012, “ Powering Up the Future: Radical Polymers for Battery Applications,” Adv. Mater., 24(48), pp. 6397–6409. [CrossRef] [PubMed]
Wei, X. , Xu, W. , Vijayakumar, M. , Cosimbescu, L. , Liu, T. , Sprenkle, V. , and Wang, W. , 2014, “ TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries,” Adv. Mater., 26(45), pp. 7649–7653. [CrossRef] [PubMed]
Takechi, K. , Kato, Y. , and Hase, Y. , 2015, “ A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries,” Adv. Mater., 27(15), pp. 2501–2506. [CrossRef] [PubMed]
Lin, K. , Gómez-Bombarelli, R. , Beh, E. S. , Tong, L. , Chen, Q. , Valle, A. , Aspuru-Guzik, A. , Aziz, M. J. , and Gordon, R. G. , 2016, “ A Redox-Flow Battery With an Alloxazinebased Organic Electrolyte,” Nature Energy, 1(9), p. 16102. [CrossRef]
Janoschka, T. , Morgenstern, S. , Hiller, H. , Friebe, C. , Wolkersdörfer, K. , Häupler, B. , Hager, M. D. , and Schubert, U. S. , 2015, “ Synthesis and Characterization of TEMPO- and Viologen-Polymers for Water-Based Redox-Flow Batteries,” Polym. Chem., 6(45), pp. 7801–7811. [CrossRef]
Winsberg, J. , Muench, S. , Hagemann, T. , Morgenstern, S. , Janoschka, T. , Billing, M. , Schacher, F. H. , Hauffman, G. , Gohy, J. F. , Hoeppener, S. , Hager, M. D. , and Schubert, U. S. , 2016, “ Polymer/Zinc Hybrid-Flow Battery Using Block Copolymer Micelles Featuring a TEMPO Corona as Catholyte,” Polym. Chem., 7(9), pp. 1711–1718. [CrossRef]
Winsberg, J. , Hagemann, T. , Muench, S. , Friebe, C. , Häupler, B. , Janoschka, T. , Morgenstern, S. , Hager, M. D. , and Schubert, U. S. , 2016, “ Poly(Boron-Dipyrromethene): A Redox-Active Polymer Class for Polymer Redox-Flow Batteries,” Chem. Mater., 28(10), pp. 3401–3405. [CrossRef]
Cabana, J. , Monconduit, L. , Larcher, D. , and Palacin, M. R. , 2010, “ Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions,” Adv. Mater., 22(35), pp. E170–E192. [CrossRef] [PubMed]
Dunn, B. , Kamath, H. , and Tarascon, J.-M. , 2011, “ Electrical Energy Storage for the Grid: A Battery of Choices,” Science, 334(6058), pp. 928–935. [CrossRef] [PubMed]
Zhang, H. , Mao, C. , Li, J. , and Chen, R. , 2017, “ Advances in Electrode Materials for Li-Based Rechargeable Batteries,” RSC Adv., 7(54), pp. 33789–33811.
Yamada, A. , Chung, S.-C. , and Hinokuma, K. , 2001, “ Optimized LiFePO4 for Lithium Battery Cathodes,” J. Electrochem. Soc., 148(3), pp. A224–A229. [CrossRef]
Yoo, E. , Kim, J. , Hosono, E. , Zhou, H.-S. , Kudo, T. , and Honma, I. , 2008, “ Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries,” Nano Lett., 8(8), pp. 2277–2282. [CrossRef] [PubMed]
Ventosa, E. , Zampardi, G. , Flox, C. , La Mantia, F. , Schuhmann, W. , and Morante, J. , 2015, “ Solid Electrolyte Interphase in Semi-Solid Flow Batteries: A Wolf in Sheep's Clothing,” Chem. Commun., 51(81), pp. 14973–14976. [CrossRef]
Biendicho, J. J. , Flox, C. , Sanz, L. , and Morante, J. R. , 2016, “ Static and Dynamic Studies on LiNi1/3Co1/3Mn1/3O2‐Based Suspensions for Semi–Solid Flow Batteries,” ChemSusChem, 9(15), pp. 1938–1944. [CrossRef] [PubMed]
Wei, T. S. , Fan, F. Y. , Helal, A. , Smith, K. C. , McKinley, G. H. , Chiang, Y. M. , and Lewis, J. A. , 2015, “ Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells With High Energy Density, Fast Charge Transport, and Low-Dissipation Flow,” Adv. Energy Mater., 5(15), p. 1500535. [CrossRef]
Qi, Z. , Liu, A. L. , and Koenig, G. M. , 2017, “ Carbon-Free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries,” Electrochim. Acta, 228, pp. 91–99. [CrossRef]
Qi, Z. , and Koenig, G. M. , 2016, “ A Carbon-Free Lithium-Ion Solid Dispersion Redox Couple With Low Viscosity for Redox Flow Batteries,” J. Power Sources, 323, pp. 97–106. [CrossRef]
Li, Z. , Smith, K. C. , Dong, Y. , Baram, N. , Fan, F. Y. , Xie, J. , Limthongkul, P. , Carter, W. C. , and Chiang, Y.-M. , 2013, “ Aqueous Semi-Solid Flow Cell: Demonstration and Analysis,” Phys. Chem. Chem. Phys., 15(38), pp. 15833–15839. [CrossRef] [PubMed]
Ventosa, E. , Buchholz, D. , Klink, S. , Flox, C. , Chagas, L. G. , Vaalma, C. , Schuhmann, W. , Passerini, S. , and Morante, J. R. , 2015, “ Non-Aqueous Semi-Solid Flow Battery Based on Na-Ion Chemistry. P2-Type NaxNi0.22Co0.11Mn0.66O2–NaTi2(PO4)3,” Chem. Commun., 51(34), pp. 7298–7301. [CrossRef]
Fang, Y. , Zhang, J. , Xiao, L. , Ai, X. , Cao, Y. , and Yang, H. , 2017, “ Phosphate Framework Electrode Materials for Sodium Ion Batteries,” Adv. Sci., 4(5), p. 1600392. [CrossRef]
Ding, Y. , Zhao, Y. , Li, Y. , Goodenough, J. B. , and Yu, G. , 2017, “ A High-Performance All-Metallocene-Based, Non-Aqueous Redox Flow Battery,” Energy Environ. Sci., 10(2), pp. 491–497. [CrossRef]
Pan, F. , Huang, Q. , Huang, H. , and Wang, Q. , 2016, “ High-Energy Density Redox Flow Lithium Battery With Unprecedented Voltage Efficiency,” Chem. Mater., 28(7), pp. 2052–2057. [CrossRef]
Huang, Q. , Li, H. , Grätzel, M. , and Wang, Q. , 2013, “ Reversible Chemical Delithiation/Lithiation of LiFePO4: Towards a Redox Flow Lithium-Ion Battery,” Phys. Chem. Chem. Phys., 15(6), pp. 1793–1797. [CrossRef] [PubMed]
Ding, Y. , Zhao, Y. , and Yu, G. , 2015, “ A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery,” Nano Lett., 15(6), pp. 4108–4113. [CrossRef] [PubMed]
Tomai, T. , Saito, H. , and Honma, I. , 2017, “ High-Energy-Density Electrochemical Flow Capacitors Containing Quinone Derivatives Impregnated in Nanoporous Carbon Beads,” J. Mater. Chem. A, 5(5), pp. 2188–2194. [CrossRef]
Yang, Y. , Zheng, G. , and Cui, Y. , 2013, “ A Membrane-Free Lithium/Polysulfide Semi-Liquid Battery for Large-Scale Energy Storage,” Energy Environ. Sci., 6(5), pp. 1552–1558. [CrossRef]
Chen, H. , Zou, Q. , Liang, Z. , Liu, H. , Li, Q. , and Lu, Y.-C. , 2015, “ Sulphur-Impregnated Flow Cathode to Enable High-Energy-Density Lithium Flow Batteries,” Nat. Commun., 6, p. 5877. [CrossRef] [PubMed]
Chen, H. , and Lu, Y. C. , 2016, “ A High‐Energy‐Density Multiple Redox Semi‐Solid‐Liquid Flow Battery,” Adv. Energy Mater., 6(8), p. 1502183. [CrossRef]
Hamelet, S. , Larcher, D. , Dupont, L. , and Tarascon, J.-M. , 2013, “ Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries,” J. Electrochem. Soc., 160(3), pp. A516–A520. [CrossRef]
Brunini, V. E. , Chiang, Y.-M. , and Carter, W. C. , 2012, “ Modeling the Hydrodynamic and Electrochemical Efficiency of Semi-Solid Flow Batteries,” Electrochim. Acta, 69, pp. 301–307. [CrossRef]
Johnson, D. , and Reid, M. , 1985, “ Chemical and Electrochemical Behavior of the Cr(III)/Cr(II) Half‐Cell in the Iron‐Chromium Redox Energy Storage System,” J. Electrochem. Soc., 132(5), pp. 1058–1062. [CrossRef]
Giner, J. , Swette, L. , and Cahill, K. , 1976, “ Screening of Redox Couples and Electrode Materials,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-CR-134705.
Ciprios, G. , Erskine, W. , and Grimes, P. G. , 1977, “ Redox Bulk Energy Storage System Study,” Exxon Research and Engineering Co., Government Research Labs, Linden, NJ, Technical Report No. NASA-CR-135206.
Michaels, K. , and Hall, G. , 1980, “ Cost Projections for Redox Energy Storage Systems,” United Technologies Corp., Power Systems Div., South Windsor, CT, Technical Report No. NASA-CR-165260.
Warshay, M. , and Wright, L. O. , 1977, “ Cost and Size Estimates for a Redox Bulk Energy Storage Concept,” J. Electrochem. Soc., 124(2), pp. 173–177. [CrossRef]
Price, A. , Bartley, S. , Male, S. , and Cooley, G. , 1999, “ A Novel Approach to Utility Scale Energy Storage [Regenerative Fuel Cells],” Power Eng. J., 13(3), pp. 122–129. [CrossRef]
Shigematsu, T. , 2011, “ Redox Flow Battery for Energy Storage,” SEI. Tech. Rev., 73, pp. 4–13.
Shi, F. , 2014, “ Design of Flow Battery,” Reactor and Process Design in Sustainable Energy Technology, Elsevier, Amsterdam, The Netherlands, pp. 72–75.
Skyllas-Kazacos, M. , 2010, “ Energy Storage for Stand-Alone/Hybrid Systems: Electro-Chemical Energy Storage Technologies,” Stand-Alone and Hybrid Wind Systems: Technology, Energy Storage and Applications, Woodhead Publishing, Cambridge, UK.
Chan, K.-Y. , and Vanessa Li, C.-Y. , 2014, Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms For Energy Conversion, CRC Press, Boca Raton, FL, pp. 380–384. [CrossRef]
Tokuda, N. , Kumamoto, T. , Shigematsu, T. , Deguchi, H. , Ito, T. , Yoshikawa, N. , and Hara, T. , 1998, “ Development of a Redox Flow Battery System,” SEI. Tech. Rev., 45, pp. 88–94.
Alotto, P. , Guarnieri, M. , and Moro, F. , 2014, “ Redox Flow Batteries for the Storage of Renewable Energy: A Review,” Renewable Sustainable Energy Rev., 29, pp. 325–335. [CrossRef]
Chalamala, B. R. , Soundappan, T. , Fisher, G. R. , Anstey, M. R. , Viswanathan, V. V. , and Perry, M. L. , 2014, “ Redox Flow Batteries: An Engineering Perspective,” Proc. IEEE, 102(6), pp. 976–999. [CrossRef]
Hoberecht, M. A. , and Thaller, L. H. , 1982, “ Design Flexibility of Redox Flow Systems,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. NASA-TM-82854.
Aaron, D. S. , Liu, Q. , Tang, Z. , Grim, G. M. , Papandrew, A. B. , Turhan, A. , Zawodzinski, T. A. , and Mench, M. M. , 2012, “ Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture,” J. Power Sources, 206, pp. 450–453. [CrossRef]
Perrry, M. L. , 2009, “ Flow Battery With Interdigitated Flow Field,” United Technologies Corporation, Farmington, CT, U.S. Patent No. US9166243 B2.
Di Noto, V. , Guarnieri, M. , and Moro, F. , 2010, “ A Dynamic Circuit Model of a Small Direct Methanol Fuel Cell for Portable Electronic Devices,” IEEE Trans. Ind. Electron., 57(6), pp. 1865–1873.
Ma, X. , Zhang, H. , and Xing, F. , 2011, “ A Three-Dimensional Model for Negative Half-Cell of the Vanadium Redox Flow Battery,” Electrochim. Acta, 58, pp. 238–246. [CrossRef]
Viswanathan, V. , Wang, W. , Li, B. , Coffey, G. , Thomsen, E. , Graff, G. , Balducci, P. , Kintnereyer, M. , and Sprenkle, V. , 2014, “ Cost and Performance Model for Redox Flow Batteries,” J. Power Sources, 247, pp. 1040–1051. [CrossRef]
Li, B. , Luo, Q. , Wei, X. , Nie, Z. , Thomsen, E. , Chen, B. , Sprenkle, V. , and Wang, W. , 2014, “ Capacity Decay Mechanism of Microporous Separator-Based All-Vanadium Redox Flow Batteries and Its Recovery,” ChemSusChem, 7(2), pp. 577–584. [CrossRef] [PubMed]
Cho, K. T. , Albertus, P. , Battaglia, V. , Kojic, A. , Srinivasan, V. , and Weber, A. Z. , 2013, “ Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage,” Energy Technol., 1(10), pp. 596–608. [CrossRef]
Perry, M. L. , Darling, R. M. , and Zaffou, R. , 2013, “ High Power Density Redox Flow Battery Cells,” ECS Trans., 53(7), pp. 7–16. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Structure of PIM-1, a polymer of intrinsic microporosity

Grahic Jump Location
Fig. 2

Structure of Nafion and the cluster-network model: hydrophilic clusters connected by short narrow channels, short curves: Nafion side chains, and dots: sulfonic acid groups [28]

Grahic Jump Location
Fig. 3

Membrane preparation in a pre-irradiation grafting process. Bifunctionalized ETFE-graft-poly(styrene-co-acrylonitrile) membranes were obtained via activation by electron-beam irradiation, grafting of styrene and acrylonitrile, amidoximation, and sulfonation. Under the acidic conditions, the amidoxime groups are probably in protonated, positively charged form.

Grahic Jump Location
Fig. 4

A Diels–Alder poly(phenylene) with quaternary ammonium groups (left) and sulfonic acid groups (right)

Grahic Jump Location
Fig. 5

(a) and (b) Cross-sectional SEM images of a CMPSF membrane immersed for 3 days in an imidazole solution, (c) dependence of the efficiencies on the current densities, and (d) cycling test at 120 mA cm−2. (Reproduced with permission from Zhao et al. [14]. Copyright 2016 by Wiley.)

Grahic Jump Location
Fig. 6

Structures of mPBI, pPBI, O-PBI, BIpPBI, and abPBI and interaction of mPBI with sulfuric acid

Grahic Jump Location
Fig. 7

(a) Cross-sectional SEM image of a 68 -μm thick porous O-PBI membrane, (b) 12 kW stack made with that membrane, cycling performance for (c) a single cell, and (d) a 1 kW stack. (Reproduced with permission from Yuan et al. [13]. Copyright 2016 by Royal Society of Chemistry.)

Grahic Jump Location
Fig. 8

Schematic illustration of the redox reaction mechanism for (a) VO2+/VO2+ redox couple in the catholyte and (b) V3+/V2+ redox couple in the anolyte on the surface of the carbon felt electrode in VRFB. (Reproduced with permission from Kim et al. [101]. Copyright 2015 by Royal Society of Chemistry.)

Grahic Jump Location
Fig. 9

Structures of selected organic compounds

Grahic Jump Location
Fig. 10

Solubility and redox potential of some organic redox-active species

Grahic Jump Location
Fig. 11

(a) A schematic representation of a polymer-based RFB. The anolyte and catholyte are separated by a size exclusion membrane and (b) electrode reactions. (Reproduced with permission from Janoschka et al. [21]. Copyright 2015 by Nature Publishing Group.)

Grahic Jump Location
Fig. 12

(a) Redox reactions of TEMPO+/TEMPO and Zn2+/Zn0 couples and (b) a schematic representation of the copolymer structure of PTMA-b-PS. (Reproduced with permission from Winsberg et al. [172]. Copyright 2016 by Royal Society of Chemistry.)

Grahic Jump Location
Fig. 13

(a) Synthesis and (b) redox mechanism of polymers P3 and P4. (Reproduced with permission from Winsberg et al. [173]. Copyright 2016 by American Chemical Society.)

Grahic Jump Location
Fig. 14

(a) Schematic illustration of a semi-solid RFB and (b) a percolation network between the suspension

Grahic Jump Location
Fig. 15

The cyclic voltammetry properties of (a) 10 mM sulfur, (b)10 mM LiI, and (c) a mixture of 10 mM sulfur and 10 mM LiI at 1 mV s−1. (Reproduced with permission from Chen et al. [194]. Copyright 2016 by Wiley.)

Grahic Jump Location
Fig. 16

Schematic of cross section of different flow fields: (a) flow-by bipolar plate and (b) flow-through bipolar plate. (Reproduced with Permission by Chalamala et al. [209]. Copyright 2014 by IEEE.)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In