0
Research Papers

An Interdisciplinary View of Interfaces: Perspectives Regarding Emergent Phase Formation

[+] Author and Article Information
Kyle S. Brinkman

Department of Materials Science
and Engineering,
Clemson University,
Clemson, SC 29634
e-mail: ksbrink@clemson.edu

1Corresponding author.

Manuscript received July 18, 2017; final manuscript received August 10, 2017; published online October 4, 2017. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 15(1), 011003 (Oct 04, 2017) (9 pages) Paper No: JEECS-17-1090; doi: 10.1115/1.4037583 History: Received July 18, 2017; Revised August 10, 2017

A perspective on emergent phase formation is presented using an interdisciplinary approach gained by working at the “interface” between diverse application areas, including solid oxide fuel cells (SOFCs) and ionic membrane systems, solid state lithium batteries, and ceramics for nuclear waste immobilization. The grain boundary interfacial characteristics of model single-phase materials in these application areas, including (i) CeO2, (ii) Li7La3Zr2O12 (LLZO), and (iii) hollandite of the form BaxCsyGa2x+yTi8-2x-yO16, as well as the potential for emergent phase formation in composite systems, are discussed. The potential physical properties resulting from emergent phase structure and distribution are discussed, including an overview of existing three-dimensional (3D) imaging techniques recently used for characterization. Finally, an approach for thermodynamic characterization of emergent phases based on melt solution calorimetry is outlined, which may be used to predict the energy landscape including phase formation and stability of complex multiphase systems.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chiang, Y. M. , Lavik, I. , Kosacki, I. , Tuller, H. L. , and Ying, J. Y. , 1996, “ Defect and Transport Properties of Nanocrystalline CeO2-x,” Appl. Phys. Lett., 69(2), pp. 185–187. [CrossRef]
Pergolesi, D. , Fabbri, E. , D'™Epifanio, A. , Di Bartolomeo, E. , Tebano, A. , Sanna, S. , Licoccia, S. , Balestrino, G. , and Traversa, E. , 2010, “ High Proton Conduction in Grain-Boundary-Free Yttrium-Doped Barium Zirconate Films Grown by Pulsed Laser Deposition,” Nat. Mater., 9(10), pp. 846–852. [CrossRef] [PubMed]
Kim, Y. B. , Shim, J. H. , Gür, T. M. , and Prinz, F. B. , 2011, “ Epitaxial and Polycrystalline Gadolinia-Doped Ceria Cathode Interlayers for Low Temperature Solid Oxide Fuel Cells,” J. Electrochem. Soc., 158(11), pp. B1453–B1457. [CrossRef]
Badwal, S. P. S. , Deller, R. , Foger, R. , Ramprakash, Y. , and Zhang, J. P. , 1997, “ Interaction Between Chromia Forming Alloy Interconnects and Air Electrode of Solid Oxide Fuel Cells,” Solid State Ionics, 99(3–4), pp. 297–310. [CrossRef]
Horita, T. , Xiong, Y. , Kishimoto, H. , Yamaji, K. , Brito, M. E. , and Yokokawa, H. , 2010, “ Chromium Poisoning and Degradation at (La,Sr)MnO3 and (La,Sr)FeO3 Cathodes for Solid Oxide Fuel Cells,” J. Electrochem. Soc., 157(5), pp. B614–B620. [CrossRef]
Inaba, H. , and Tagawa, H. , 1996, “ Ceria-Based Solid Electrolytes—Review,” Solid State Ionics, 83(1–2), pp. 1–16. [CrossRef]
Navrotsky, A. , 2010, “ Thermodynamics of Solid Electrolytes and Related Oxide Ceramics Based on the Fluorite Structure,” J. Mater. Chem., 20(47), pp. 10577–10587. [CrossRef]
Stefanovsky, S. V. , and Yudintsev, S. V. , 2016, “ Titanates, Zirconates, Aluminates and Ferrites as Waste Forms for Actinide Immobilization,” Russ. Chem. Rev., 85(9), pp. 962–994. [CrossRef]
Caporuscio, F. A. , Scott, B. L. , Xu, H. , and Feller, R. K. , 2014, “ Garnet Nuclear Waste Forms—Solubility at Repository Conditions,” Nucl. Eng. Des., 266, pp. 180–185. [CrossRef]
Takahashi, T. , and Kuwabara, K. , 1978, “ Ionic Conductivities of Hollandites,” Electrochim. Acta, 23(4), pp. 375–379. [CrossRef]
Xu, Y. , Wen, Y. , Grote, R. , Amoroso, J. , Nickles, S. L. , and Brinkman, K. S. , 2016, “ A-Site Compositional Effects in Ga-Doped Hollandite Materials of the Form BaxCsyGa2x+yTi8-2x-yO16: Implications for Cs Immobilization in Crystalline Ceramic Waste Forms,” Sci. Rep., 6, p. 27412. [CrossRef] [PubMed]
Dillon, S. J. , and Harmer, M. P. , 2007, “ Multiple Grain Boundary Transitions in Ceramics: A Case Study of Alumina,” Acta Mater., 55(15), pp. 5247–5254. [CrossRef]
Wang, C. M. , Cargill, G. S. , III, Harmer, M. P. , Chan, H. M. , and Cho, C. J. , 1999, “ Atomic Structural Environment of Grain Boundary Segregated Y and Zr in Creep Resistant Alumina From EXAFS,” Acta Mater., 47(12), pp. 3411–3422. [CrossRef]
Dillon, S. J. , Tang, M. , Carter, W. C. , and Harmer, M. P. , 2007, “ Complexion: A New Concept for Kinetic Engineering in Materials Science,” Acta Mater., 55(18), pp. 6208–6218. [CrossRef]
Kim, S. , and Maier, J. , 2004, “ Partial Electronic and Ionic Conduction in Nanocrystalline Ceria: Role of Space Charge,” J. Eur. Ceram. Soc., 24(6), pp. 1919–1923. [CrossRef]
Kim, S. , and Maier, J. , 2002, “ On the Conductivity Mechanism of Nanocrystalline Ceria,” J. Electrochem. Soc., 149(10), pp. J73–J83. [CrossRef]
Tuller, H. L. , Litzelman, S. J. , and Jung, W. , 2009, “ Micro-Ionics: Next Generation Power Sources,” Phys. Chem. Chem. Phys., 11(17), pp. 3023–3034. [CrossRef] [PubMed]
Kjolseth, C. , Fjeld, H. , Prytz, O. , Dahl, P. I. , Estournès, C. , Haugsrud, R. , and Norby, T. , 2010, “ Space-Charge Theory Applied to the Grain Boundary Impedance of Proton Conducting BaZr0.9Y0.1O3 (-) δ,” Solid State Ionics, 181(5–7), pp. 268–275.
Brinkman, K. , Takamura, H. , Tuller, H. L. , and Iijima, T. , 2010, “ The Oxygen Permeation Properties of Nanocrystalline CeO2 Thin Films,” J. Electrochem. Soc., 157(12), pp. B1852–B1857. [CrossRef]
Bishop, S. R. , Marrocchelli, D. , Chatzichristodoulou, C. , Perry, N. H. , Mogensen, M. B. , Tuller, H. L. , and Wachsman, E. D. , 2014, “ Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices,” Annu. Rev. Mater. Res., 44(1), pp. 205–239. [CrossRef]
Mogensen, G. , and Mogensen, M. , 1993, “ Reduction Reactions In Doped Ceria Ceramics Studied By Dilatometry,” Thermochim. Acta, 214(1), pp. 47–50. [CrossRef]
De Souza, R. A. , Ramadan, A. , and Horner, S. , 2012, “ Modifying the Barriers for Oxygen-Vacancy Migration in Fluorite-Structured CeO2 Electrolytes Through Strain: A Computer Simulation Study,” Energy Environ. Sci., 5(1), pp. 5445–5453. [CrossRef]
Yildiz, B. , 2014, “ ‘Stretching’ the Energy Landscape of Oxides-Effects on Electrocatalysis and Diffusion,” MRS Bull., 39(2), pp. 147–156. [CrossRef]
Shi, Y. U. , Bork, A. H. , Schweiger, S. , and Rupp, J. L. M. , 2015, “ The Effect of Mechanical Twisting on Oxygen Ionic Transport in Solid-State Energy Conversion Membranes,” Nat. Mater., 14(7), pp. 721–727.
Kant, K. M. , Esposito, V. , and Pryds, N. , 2012, “ Strain Induced Ionic Conductivity Enhancement in Epitaxial Ce0.9Gd0.1O2-Delta Thin Films,” Appl. Phys. Lett., 100(3), p. 033105. [CrossRef]
Lei, Y. Y. , Ito, Y. , Browning, N. D. , and Mazanec, T. J. , 2002, “ Segregation Effects at Grain Boundaries in Fluorite-Structured Ceramics,” J. Am. Ceram. Soc., 85(9), pp. 2359–2363. [CrossRef]
Li, Z. P. , Mori, T. , Auchterlonie, G. J. , Zou, J. , and Drennan, J. , 2011, “ Direct Evidence of Dopant Segregation in Gd-Doped Ceria,” Appl. Phys. Lett., 98(9), p. 093104. [CrossRef]
Bae, J. , Lim, Y. , Park, J.-S. , Lee, D. , Hong, S. , An, J. , and Kim, Y.-B. , 2016, “ Thermally-Induced Dopant Segregation Effects on the Space Charge Layer and Ionic Conductivity of Nanocrystalline Gadolinia-Doped Ceria,” J. Electrochem. Soc., 163(8), pp. F919–F926. [CrossRef]
An, J. , Bae, J. , Hong, S. , Koo, B. , Kim, Y.-B. , Gür, T. M. , and Prinz, F. B. , 2015, “ Grain Boundary Blocking of Ionic Conductivity in Nanocrystalline Yttria-Doped Ceria Thin Films,” Scr. Mater., 104, pp. 45–48. [CrossRef]
Aidhy, D. S. , and Weber, W. J. , 2016, “ Microstructure Design for Fast Oxygen Conduction,” J. Mater. Res., 31(1), pp. 2–16. [CrossRef]
Lin, Y. , Fang, S. , Su, D. , Brinkman, K. S. , and Chen, F. , 2015, “ Enhancing Grain Boundary Ionic Conductivity in Mixed Ionic-Electronic Conductors,” Nat. Commun., 6, p. 9.
Thangadurai, V. , Kaack, H. , and Weppner, W. J. F. , 2003, “ Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta),” J. Am. Ceram. Soc., 86(3), pp. 437–440. [CrossRef]
Murugan, R. , Thangadurai, V. , and Weppner, W. , 2007, “ Fast Lithium Ion Conduction in Garnet-Type Li(7)La(3)Zr(2)O(12),” Angew. Chem. Int. Ed. Engl., 46(41), pp. 7778–7781. [CrossRef] [PubMed]
Cheng, L. , Park, J. S. , Hou, H. , Zorba, V. , Chen, G. , Richardson, T. , Cabana, J. , Russo, R. , and Doeff, M. , 2014, “ Effect of Microstructure and Surface Impurity Segregation on the Electrical and Electrochemical Properties of Dense Al-Substituted Li7La3Zr2O12,” J. Mater. Chem. A, 2(1), pp. 172–181. [CrossRef]
Huang, M. A. , Liu, T. , Deng, Y. , Geng, H. , Shen, Y. , Lin, Y. , and Nan, C. , 2011, “ Effect of Sintering Temperature on Structure and Ionic Conductivity of Li-7 (-) xLa3Zr2O12-0.5x (x=0.5 Similar to 0.7) Ceramics,” Solid State Ionics, 204–205, pp. 41–45. [CrossRef]
Awaka, J. , Kijima, N. , Hayakawa. H., and Akimoto, J. , 2009, “ Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 With the Garnet-Related Type Structure,” J. Solid State Chem., 182(8), pp. 2046–2052. [CrossRef]
Awaka, J. , Akira, T. , Kunimitsu, K. , Norihito, K. , Yasushi, I. , and Junji, A. , 2011, “ Crystal Structure of Fast Lithium-Ion-Conducting Cubic Li7La3Zr2O12,” Chem. Lett., 40(1), pp. 60–62. [CrossRef]
Jin, Y. , and McGinn, P. J. , 2011, “ Al-Doped Li7La3Zr2O12 Synthesized by a Polymerized Complex Method,” J. Power Sources, 196(20), pp. 8683–8687. [CrossRef]
Allen, J. L. , Wolfenstine, J. , Rangasamy, E. , and Sakamoto, J. , 2012, “ Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12,” J. Power Sources, 206, pp. 315–319. [CrossRef]
Wolfenstine, J. , Sakamoto, J. , and Allen, J. L. , 2012, “ Electron Microscopy Characterization of Hot-Pressed Al Substituted Li7La3Zr2O12,” J. Mater. Sci., 47(10), pp. 4428–4431. [CrossRef]
Chen, R.-J. , Huang, M. , Huang, W.-Z. , Shen, Y. , Lin, Y.-H. , and Nan, C. , 2014, “ Effect of Calcining and Al Doping on Structure and Conductivity of Li7La3Zr2O12,” Solid State Ionics, 265, pp. 7–12. [CrossRef]
Langer, F. , Glenneberg, J. , Bardenhagen, I. , and Kun, R. , 2015, “ Synthesis of Single Phase Cubic Al-Substituted Li7La3Zr2O12 by Solid State Lithiation of Mixed Hydroxides,” J. Alloys Compd., 645, pp. 64–69. [CrossRef]
Kumazaki, S. , Iriyama, Y. , Kim, K.-H. , Murugan, R. , Tanabe, K. , Yamamoto, K. , Hirayama, T. , and Ogumi, Z. , 2011, “ High Lithium Ion Conductive Li7La3Zr2O12 by Inclusion of Both Al and Si,” Electrochem. Commun., 13(5), pp. 509–512. [CrossRef]
Wolfenstine, J. , et al. ., 2012, “ Synthesis and High Li-Ion Conductivity of Ga-Stabilized Cubic Li7La3Zr2O12,” Mater. Chem. Phys., 134(2–3), pp. 571–575. [CrossRef]
El Shinawi, H. , and Janek, J. , 2013, “ Stabilization of Cubic Lithium-Stuffed Garnets of the Type “Li7La3Zr2O12” by Addition of Gallium,” J. Power Sources, 225, pp. 13–19. [CrossRef]
Li, C. L. , Liu, Y. , He, J. , and Brinkman, K. S. , 2017, “ Ga-Substituted Li7La3Zr2O12: An Investigation Based on Grain Coarsening in Garnet-Type Lithium Ion Conductors,” J. Alloys Compd., 695, pp. 3744–3752. [CrossRef]
Thompson, T. , Wolfenstine, J. , Allen, J. L. , Johannes, M. , Huq, A. , David, I. N. , and Sakamoto, J. , 2014, “ Tetragonal vs. Cubic Phase Stability in Al—Free Ta Doped Li7La3Zr2O12(LLZO),” J. Mater. Chem. A, 2(33), pp. 13431–13436. [CrossRef]
Liu, C. , Rui, K. , Shen, C. , Badding, M. E. , Zhang, G. , and Wen, Z. , 2015, “ Reversible Ion Exchange and Structural Stability of Garnet-Type Nb-Doped Li7La3Zr2O12 in Water for Applications in Lithium Batteries,” J. Power Sources, 282, pp. 286–293. [CrossRef]
Li, Y. , Wang, Z. , Cao, Y. , Du, F. , Chen, C. , Cui, Z. , and Guo, X. , 2015, “ W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-Ion Batteries,” Electrochim. Acta, 180, pp. 37–42. [CrossRef]
Xu, C. Y. , Zhen, L. , Zhang, Q. , Tang, J. , and Qin, L.-C. , 2008, “ Microstructural Characterization of Single-Crystalline Potassium Hollandite Nanowires,” Mater. Charact., 59(12), pp. 1805–1808. [CrossRef]
Michiue, Y. , Sato, A. , and Watanabe, M. , 1999, “ Low-Temperature Phase of Sodium Priderite, NaxCrxTi8-xO16, With a Monoclinic Hollandite Structure,” J. Solid State Chem., 145(1), pp. 182–185. [CrossRef]
Barbato, S. , and Gautier, J. L. , 2001, “ Hollandite Cathodes for Lithium Ion Batteries. 2. Thermodynamic and Kinetics Studies of Lithium Insertion Into BaMMn7O16 (M = Mg, Mn, Fe, Ni),” Electrochim. Acta, 46(18), pp. 2767–2776. [CrossRef]
Ringwood, A. E. , 1985, “ Disposal of High-Level Nuclear Wastes—A Geological Perspective,” Mineral. Mag., 49(351), pp. 159–176. [CrossRef]
Kesson, S. E. , 1983, “ The Immobilization of Cesium in Synroc Hollandite,” Radioact. Waste Manage. Environ. Restor., 4(1), pp. 53–72.
Carter, M. L. , Gillen, A. L. , Olufson, K. , and Vance, E. R. , 2009, “ HIPed Tailored Hollandite Waste Forms for the Immobilization of Radioactive Cs and Sr,” J. Am. Ceram. Soc., 92(5), pp. 1112–1117. [CrossRef]
Xu, Y. , Feygenson, M. , Page, K. , Nickles, L. S. , and Brinkman, K. S. , 2016, “ Structural Evolution in Hollandite Solid Solutions Across the A-Site Compositional Range From Ba1.33Ga2.66Ti5.34O16 to Cs1.33Ga1.33Ti6.67O16,” J. Am. Ceram. Soc., 99(12), pp. 4100–4106. [CrossRef]
Kagomiya, I. , Iijima, T. , and Takamura, H. , 2006, “ Oxygen Permeability of Nanocrystalline Ce0.8Gd0.2O1.9-CoFe2O4 Mixed-Conductive Films,” J. Membr. Sci., 286(1–2), pp. 180–184. [CrossRef]
Takamura, H. , Okumura, K. , Koshino, Y. , Kamegawa, A. , and Okada, M. , 2004, “ Oxygen Permeation Properties of Ceria-Ferrite-Based Composites,” J. Electroceram., 13(1–3), pp. 613–618. [CrossRef]
Ramasamy, M. , Baumann, S. , Palisaitis, J. , Schulze-Küppers, F. , Balaguer, M. , Kim, D. , Meulenberg, W. A. , Mayer, J. , Bhave, R. , Guillon, O. , and Bram, M. , 2016, “ Influence of Microstructure and Surface Activation of Dual-Phase Membrane Ce0.8Gd0.2O2–FeCo2O4 on Oxygen Permeation,” J. Am. Ceram. Soc., 99(1), pp. 349–355. [CrossRef]
Harris, W. M. , Brinkman, K. S. , Lin, Y. , Su, D. , Cocco, A. P. , Nakajo, A. , DeGostin, M. B. , Chen-Wiegart, Y.-C. K. , Wang, J. , Chen, F. , Chu, Y. S. , and Chiu, W. K. S. , 2014, “ Characterization of 3D Interconnected Microstructural Network in Mixed Ionic and Electronic Conducting Ceramic Composites,” Nanoscale, 6(9), pp. 4480–4485. [CrossRef] [PubMed]
Wu, J.-F. , Chen, E.-Y. , Yu, Y. , Liu, L. , Wu, Y. , Pang, W. K. , Peterson, V. K. , and Guo, X. , 2017, “ Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes With High Lithium-Ion Conductivity,” ACS Appl. Mater. Interfaces, 9(2), pp. 1542–1552. [CrossRef] [PubMed]
Du, F. M. , Zhao, N. , Li, Y. , Chen, C. , Liu, Z. , and Guo, X. , 2015, “ All Solid State Lithium Batteries Based on Lamellar Garnet-Type Ceramic Electrolytes,” J. Power Sources, 300, pp. 24–28. [CrossRef]
Han, X. G. , Gong, Y. , Fu, K. K. , He, X. , Hitz, G. T. , Dai, J. , Pearse, A. , Liu, B. , Wang, H. , Rubloff, G. , Mo, Y. , Thangadurai, V. , Wachsman, E. D. , and Hu, L. , 2017, “ Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries,” Nat. Mater., 16(5), p. 572. [CrossRef] [PubMed]
van den Broek, J. , Afyon, S. , and Rupp, J. L. M. , 2016, “ Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li+ Conductors,” Adv. Energy Mater., 6(19), p. 11. [CrossRef]
Hansel, C. , Afyon, S. , and Rupp, J. L. M. , 2016, “ Investigating the All-Solid-State Batteries Based on Lithium Garnets and a High Potential Cathode—LiMn1.5Ni0.5O4,” Nanoscale, 8(43), pp. 18412–18420. [CrossRef] [PubMed]
Zhu, Y. Z. , He, X. F. , and Mo, Y. F. , 2015, “ Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights From Thermodynamic Analyses Based on First-Principles Calculations,” ACS Appl. Mater. Interfaces, 7(42), pp. 23685–23693. [CrossRef] [PubMed]
Han, F. D. , Zhu, Y. , He, X. , Mo, Y. , and Wang, C. , 2016, “ Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes,” Adv. Energy Mater., 6(8), p. 9. [CrossRef]
Miara, L. J. , Richards, W. D. , Wang, Y. E. , and Ceder, G. , 2015, “ First-Principles Studies on Cation Dopants and ElectrolytelCathode Interphases for Lithium Garnets,” Chem. Mater., 27(11), pp. 4040–4047. [CrossRef]
Vance, E. R. , Stewart, M. W. A. , and Moricca, S. A. , 2014, “ Progress at ANSTO on SYNROC,” J. Aust. Ceram. Soc., 50(1), pp. 38–48.
Amoroso, J. , Marra, J. , Conradson, S. D. , Tang, M. , and Brinkman, K. , 2014, “ Melt Processed Single Phase Hollandite Waste Forms for Nuclear Waste Immobilization: Ba1.0Cs0.3A2.3Ti5.7O16; A = Cr, Fe, Al,” J. Alloys Compd., 584, pp. 590–599. [CrossRef]
Amoroso, J. , Marra, J. C. , Tang, M. , Lin, Y. , Chen, F. , Su, D. , and Brinkman, K. S. , 2014, “ Melt Processed Multiphase Ceramic Waste Forms for Nuclear Waste Immobilization,” J. Nucl. Mater., 454(1–3), pp. 12–21. [CrossRef]
Amoroso, J. W. , Marra, J. , Dandeneau, C. S. , Brinkman, K. , Xu, Y. , Tang, M. , Maio, V. , Webb, S. M. , and Chiu, W. K. S. , 2017, “ Cold Crucible Induction Melter Test for Crystalline Ceramic Waste Form Fabrication: A Feasibility Assessment,” J. Nucl. Mater., 486, pp. 283–297. [CrossRef]
Brixner, L. H. , 1964, “ Preparation + Properties Of Ln2Ti2O7-Type Rare Earth Titanates,” Inorg. Chem., 3(7), p. 1065. [CrossRef]
Mandal, B. P. , and Tyagi, A. K. , 2007, “ Phase Relations and High Temperature-XRD Studies of Gd2-xNdxTi2O7 Solid Solutions,” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 136(1), pp. 46–49. [CrossRef]
Harkins, D. , 2016, “ The Durability of Single, Dual, and Multiphase Titanate Ceramic Waste Forms for Nuclear Waste Immobilization,” M.S. thesis, Clemson University, Clemson, SC.
Smith, K. L. , Lumpkin, G. R. , Blackford, M. G. , Day, R. A. , and Hart, K. P. , 1992, “ The Durability Of Synroc,” J. Nucl. Mater., 190, pp. 287–294. [CrossRef]
Brinkman, K. , Fox, K. , Marra, J. , Reppert, J. , Crum, J. , and Tang, M. , 2013, “ Single Phase Melt Processed Powellite (Ba,Ca)MoO4 for the Immobilization of Mo-Rich Nuclear Waste,” J. Alloys Compd., 551, pp. 136–142. [CrossRef]
Cocco, A. P. , Nelson, G. J. , Harris, W. M. , Nakajo, A. , Myles, T. D. , Kiss, A. M. , Lombardo, J. J. , and Chiu, W. K. S. , 2013, “ Three-Dimensional Microstructural Imaging Methods for Energy Materials,” Phys. Chem. Chem. Phys., 15(39), pp. 16377–16407. [CrossRef] [PubMed]
Diercks, D. R. , Tong, J. , Zhu, H. , Kee, R. , Baure, G. , Nino, J. C. , O'Hayre, R. , and Gorman, B. P. , 2016, “ Three-Dimensional Quantification of Composition and Electrostatic Potential at Individual Grain Boundaries in Doped Ceria,” J. Mater. Chem. A, 4(14), pp. 5167–5175. [CrossRef]
Zhang, Y. X. , Chen, Y. , Lin, Y. , Yan, M. , Harris, W. M. , Chiu, W. K. S. , Ni, M. , and Chen, F. , 2016, “ Electrochemical Fields Within 3D Reconstructed Microstructures of Mixed Ionic and Electronic Conducting Devices,” J. Power Sources, 331, pp. 167–179. [CrossRef]
Lichtner, A. Z. , Jauffrès, D. , Roussel, D. , Charlot, F. , Martin, C. L. , and Bordia, R. K. , 2015, “ Dispersion, Connectivity and Tortuosity of Hierarchical Porosity Composite SOFC Cathodes Prepared by Freeze-Casting,” J. Eur. Ceram. Soc., 35(2), pp. 585–595. [CrossRef]
Cocco, A. P. , DeGostin, M. B. , Wrubel, J. A. , Damian, P. J. , Hong, T. , Xu, Y. , Liu, Y. , Pianetta, P. , Amoroso, J. W. , Brinkman, K. S. , and Chiu, W. K. S. , 2017, “ Three-Dimensional Mapping of Crystalline Ceramic Waste Form Materials,” J. Am. Ceram. Soc., 100(8), pp. 3722–3735. [CrossRef]
Reifsnider, K. , Rabbi, F. , Vadlamudi, V. , Raihan, R. , and Brinkman, K. , 2017, “ Critical Path-Driven Property and Performance Transitions in Heterogeneous Microstructures,” J. Mater. Sci., 52(9), pp. 4796–4809. [CrossRef]
Navrotsky, A. , 2014, “ Progress and New Directions in Calorimetry—A 2014 Perspective,” J. Am. Ceram. Soc., 97(11), pp. 3349–3359. [CrossRef]
Xu, H. , Wu, L. , Zhu, J. , and Navrotsky, A. , 2015, “ Synthesis, Characterization and Thermochemistry of Cs-, Rb- and Sr-Substituted Barium Aluminium Titanate Hollandites,” J. Nucl. Mater., 459, pp. 70–76. [CrossRef]
Chen, W. Q. , and Navrotsky, A. , 2006, “ Thermochemical Study of Trivalent-Doped Ceria Systems: CeO2-MO1.5 (M = La, Gd, and Y),” J. Mater. Res., 21(12), pp. 3242–3251. [CrossRef]
Reznitskii, L. A. , Filippova, S. E. , and Korzhukov, N. G. , 1971, “ Thermodynamics of the Co-Fe-O System,” Russ. J. Phys. Chem., 45, pp. 529–530.
Kanke, Y. , and Navrotsky, A. , 1998, “ A Calorimetric Study of the Lanthanide Aluminum Oxides and the Lanthanide Gallium Oxides: Stability of the Perovskites and the Garnets,” J. Solid State Chem., 141(2), pp. 424–436. [CrossRef]
Li, Y. Y. , El Gabaly, F. , Ferguson, T. R. , Smith, R. B. , Bartelt, N. C. , Sugar, J. D. , Fenton, K. R. , Cogswell, D. A. , Kilcoyne, A. L. D. , Tyliszczak, T. , Bazant, M. Z. , and Chueh, W. C. , 2014, “ Current-Induced Transition From Particle-by-Particle to Concurrent Intercalation in Phase-Separating Battery Electrodes,” Nat. Mater., 13(12), pp. 1149–1156. [CrossRef] [PubMed]
Yu, H. J. , and Zhou, H. S. , 2013, “ High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries,” J. Phys. Chem. Lett., 4(8), pp. 1268–1280. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Emergent phase distributed in 3D bulk of the material for and (b) two-dimensional model for electrode and electrolyte interfacial layer formation

Grahic Jump Location
Fig. 2

(a) Space charge profiles of acceptor dopants, oxygen vacancies, and electrons near a grain boundary interface in CeO2[17], (b) ionic and electronic conductivity dependence on grain size at 500 °C in air for CeO2[17]. (Reproduced with permission from Tuller et al. [17]. Copyright 2009 by the PCCP Owner Societies), and (c) oxygen flux μmol/cm2 s versus grain size and temperature for CeO2 nanocrystalline membranes [19]. (Reproduced with permission from Brinkman et al. [19]. Copyright 2010 by Journal of The Electrochemical Society.)

Grahic Jump Location
Fig. 3

M+3 dopant distribution at grain boundaries resulting in the formation of an interfacial space charger layer

Grahic Jump Location
Fig. 4

Perspective view of hollandite structure along [001] tunnel direction and graphic depicting microstructure as a function of Cesium concentration. (Reproduced with permission from Xu et al. [11]. Copyright 2016 by Scientific Reports.)

Grahic Jump Location
Fig. 5

CGO-CFO mixed ionic and electronic ceramic composite (a) without the formation of emergent phase and (b) with the formation of emergent phase [31]

Grahic Jump Location
Fig. 6

Graphic depicting multiphase ceramic waste form consisting of hollandite, pyrochlore, and an emergent phase exhibiting Ba-Nd partitioning in the form BaNd2Ti4O12 [75]

Grahic Jump Location
Fig. 7

(a) Orthographic revealing the 3D structure of CGO-CFO systems [60]. (Reproduced with permission from Harris et al. [60]. Copyright 2014 by Nanoscale Owner Societies) (b) 3D representation of varying Cs content observed in single-phase hollandite Ba1.04Cs0.24Ga2.32Ti5.68O16 [82]. (Reproduced with permission from Cocco et al. [82]. Copyright by 2017 Journal of the American Ceramic Society.)

Grahic Jump Location
Fig. 8

(a) Enthalpies of formation of CGO, CFO, and GFO (ΔHf,ox) [8688], and the undetermined enthalpy of formation of emergent phase GFCCO symbolized by a “?” and (b) enthalpies of reactions of GFCCO (ΔHrxn,GFCCO) relative to other competing phase assemblages including GFO, CFO, and CGO

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In