0
Research Papers

A Comparison of Felt-Type and Paper-Type Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cell Applications Using X-Ray Techniques

[+] Author and Article Information
R. Banerjee, S. Chevalier, H. Liu, J. Lee, R. Yip

Thermofluids for Energy and Advanced
Materials (TEAM) Laboratory,
Department of Mechanical and Industrial Engineering,
University of Toronto Institute for Sustainable Energy,
Faculty of Applied Science and Engineering,
University of Toronto,
5 King's College Road,
Toronto, ON M5S 3G8, Canada

K. Han

Fuel Cell R&D Group,
Eco Technology Center,
Research & Development Division,
Hyundai Motor Company,
Yongin-si 16891, Gyeonggi-do, South Korea

B. K. Hong

Fuel Cell Research Lab.,
Eco Technology Center,
Research & Development Division,
Hyundai Motor Company,
Yongin-si 16891, Gyeonggi-do, South Korea

A. Bazylak

Thermofluids for Energy and Advanced
Materials (TEAM) Laboratory,
Department of Mechanical and Industrial Engineering,
Institute for Sustainable Energy,
Faculty of Applied Science and Engineering,
University of Toronto,
5 King's College Road,
Toronto, ON M5S 3G8, Canada
e-mail: abazylak@mie.utoronto.ca

1Corresponding author.

Manuscript received July 1, 2017; final manuscript received August 19, 2017; published online October 4, 2017. Assoc. Editor: Partha P. Mukherjee.

J. Electrochem. En. Conv. Stor. 15(1), 011002 (Oct 04, 2017) (10 pages) Paper No: JEECS-17-1081; doi: 10.1115/1.4037766 History: Received July 01, 2017; Revised August 19, 2017

This work presents a comparison between carbon felt-type and paper-type gas diffusion layers (GDLs) for polymer electrolyte membrane (PEM) fuel cells in terms of the similarities and the differences between their microstructures and the corresponding manner in which liquid water accumulated within the microstructures during operation. X-ray computed tomography (CT) was used to investigate the microstructure of single-layered GDLs (without a microporous layer (MPL)) and bilayered GDLs (with an MPL). In-operando synchrotron X-ray radiography was used to visualize the GDL liquid water accumulation during fuel cell operation as a function of current density. The felt-type GDLs studied here exhibited a more uniform porosity in the core regions, and the carbon fibers in the substrate were more prone to MPL intrusion. More liquid water accumulated in the felt-type GDLs during fuel cell operation; however, when differentiating between the microstructural impact of felt and paper GDLs, the presence of an MPL in bilayered GDLs was the most influential factor in liquid water management.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mathias, M. F. , Roth, J. , Fleming, J. , and Lehnert, W. , 2010, “ Diffusion Media Materials and Characterisation,” Handbook of Fuel Cells, Wiley, Chichester, UK. [CrossRef] [PubMed] [PubMed]
Cindrella, L. , Kannan, A. M. , Lin, J. F. , Saminathan, K. , Ho, Y. , Lin, C. W. , and Wertz, J. , 2009, “ Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells—A Review,” J. Power Sources, 194(1), pp. 146–160. [CrossRef]
Hung, C.-H. , Chiu, C.-H. , Wang, S.-P. , Chiang, I.-L. , and Yang, H. , 2012, “ Ultra Thin Gas Diffusion Layer Development for PEMFC,” Int. J. Hydrogen Energy, 37(17), pp. 12805–12812. [CrossRef]
Lee, J. , Chevalier, S. , Banerjee, R. , Antonacci, P. , Ge, N. , Yip, R. , Kotaka, T. , Tabuchi, Y. , and Bazylak, A. , 2017, “ Investigating the Effects of Gas Diffusion Layer Substrate Thickness on Polymer Electrolyte Membrane Fuel Cell Performance Via Synchrotron X-Ray Radiography,” Electrochim. Acta, 236, pp. 161–170. [CrossRef]
Göbel, M. , Godehardt, M. , and Schladitz, K. , 2017, “ Multi-Scale Structural Analysis of Gas Diffusion Layers,” J. Power Sources, 355, pp. 8–17. [CrossRef]
Park, S. , Lee, J.-W. , and Popov, B. N. , 2012, “ A Review of Gas Diffusion Layer in PEM Fuel Cells: Materials and Designs,” Int. J. Hydrogen Energy, 37(7), pp. 5850–5865. [CrossRef]
Banerjee, R. , Hinebaugh, J. , Liu, H. , Yip, R. , Ge, N. , and Bazylak, A. , 2016, “ Heterogeneous Porosity Distributions of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layer Materials With Rib-Channel Compression,” Int. J. Hydrogen Energy, 41(33), pp. 14885–14896. [CrossRef]
Arvay, A. , Yli-Rantala, E. , Liu, C.-H. , Peng, X.-H. , Koski, P. , Cindrella, L. , Kauranen, P. , Wilde, P. M. , and Kannan, A. M. , 2012, “ Characterization Techniques for Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells—A Review,” J. Power Sources, 213, pp. 317–337. [CrossRef]
Rofaiel, A. , Ellis, J. S. , Challa, P. R. , and Bazylak, A. , 2012, “ Heterogeneous Through-Plane Distributions of Polytetrafluoroethylene in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers,” J. Power Sources, 201, pp. 219–225. [CrossRef]
El-Kharouf, A. , Rees, N. V. , and Steinberger-Wilckens, R. , 2014, “ Gas Diffusion Layer Materials and Their Effect on Polymer Electrolyte Fuel Cell Performance—Ex Situ and In Situ Characterization,” Fuel Cells, 14(5), pp. 735–741. [CrossRef]
George, M. , Fishman, Z. , Botelho, S. , and Bazylak, A. , 2016, “ Micro-Computed Tomography-Based Profilometry for Characterizing the Surface Roughness of Microporous Layer-Coated Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers,” J. Electrochem. Soc., 163(8), pp. F832–F841. [CrossRef]
Fishman, Z. , Hinebaugh, J. , and Bazylak, A. , 2010, “ Microscale Tomography Investigations of Heterogeneous Porosity Distributions of PEMFC GDLs,” J. Electrochem. Soc., 157(11), pp. B1643–B1650. [CrossRef]
Fishman, Z. , and Bazylak, A. , 2011, “ Heterogeneous Through-Plane Distributions of Tortuosity, Effective Diffusivity, and Permeability for PEMFC GDLs,” J. Electrochem. Soc., 158(2), pp. B247–B252. [CrossRef]
Fishman, Z. , and Bazylak, A. , 2011, “ Heterogeneous Through-Plane Porosity Distributions for Treated PEMFC GDLs—I: PTFE Effect,” J. Electrochem. Soc., 158(8), pp. B841–B845. [CrossRef]
Fishman, Z. , and Bazylak, A. , 2011, “ Heterogeneous Through-Plane Porosity Distributions for Treated PEMFC GDLs—II: Effect of MPL Cracks,” J. Electrochem. Soc., 158(8), pp. B846–B851. [CrossRef]
Pfrang, A. , Veyret, D. , Sieker, F. , and Tsotridis, G. , 2010, “ X-Ray Computed Tomography of Gas Diffusion Layers of PEM Fuel Cells: Calculation of Thermal Conductivity,” Int. J. Hydrogen Energy, 35(8), pp. 3751–3757. [CrossRef]
Flückiger, R. , Marone, F. , Stampanoni, M. , Wokaun, A. , and Büchi, F. N. , 2011, “ Investigation of Liquid Water in Gas Diffusion Layers of Polymer Electrolyte Fuel Cells Using X-Ray Tomographic Microscopy,” Electrochim. Acta, 56(5), pp. 2254–2262. [CrossRef]
Markötter, H. , Manke, I. , Krüger, P. , Arlt, T. , Haussmann, J. , Klages, M. , Riesemeier, H. , Hartnig, C. , Scholta, J. , and Banhart, J. , 2011, “ Investigation of 3D Water Transport Paths in Gas Diffusion Layers by Combined in-Situ Synchrotron X-Ray Radiography and Tomography,” Electrochem. Commun., 13(9), pp. 1001–1004. [CrossRef]
Epting, W. K. , Gelb, J. , and Litster, S. , 2012, “ Resolving the Three-Dimensional Microstructure of Polymer Electrolyte Fuel Cell Electrodes Using Nanometer-Scale X-Ray Computed Tomography,” Adv. Funct. Mater., 22(3), pp. 555–560. [CrossRef]
James, J. P. , Choi, H.-W. , and Pharoah, J. G. , 2012, “ X-Ray Computed Tomography Reconstruction and Analysis of Polymer Electrolyte Membrane Fuel Cell Porous Transport Layers,” Int. J. Hydrogen Energy, 37(23), pp. 18216–18230. [CrossRef]
Wargo, E. A. , Schulz, V. P. , Çeçen, A. , Kalidindi, S. R. , and Kumbur, E. C. , 2013, “ Resolving Macro- and Micro-Porous Layer Interaction in Polymer Electrolyte Fuel Cells Using Focused Ion Beam and X-Ray Computed Tomography,” Electrochim. Acta, 87, pp. 201–212. [CrossRef]
Wargo, E. A. , Kotaka, T. , Tabuchi, Y. , and Kumbur, E. C. , 2013, “ Comparison of Focused Ion Beam Versus Nano-Scale X-Ray Computed Tomography for Resolving 3-D Microstructures of Porous Fuel Cell Materials,” J. Power Sources, 241, pp. 608–618. [CrossRef]
Lu, Z. , Daino, M. M. , Rath, C. , and Kandlikar, S. G. , 2010, “ Water Management Studies in PEM Fuel Cells—Part III: Dynamic Breakthrough and Intermittent Drainage Characteristics From GDLs With and Without MPLs,” Int. J. Hydrogen Energy, 35(9), pp. 4222–4233. [CrossRef]
Lu, Z. , and Patterson, J. , 2013, “ Investigation of Water Breakthrough and Flow in Gas Diffusion Layers and Relavance to Fuel Cell Water Management,” ECS Trans., 50(2), pp. 487–501. [CrossRef]
Mortazavi, M. , and Tajiri, K. , 2014, “ Liquid Water Breakthrough Pressure Through Gas Diffusion Layer of Proton Exchange Membrane Fuel Cell,” Int. J. Hydrogen Energy, 39(17), pp. 9409–9419. [CrossRef]
Kim, J. , Je, J. , Kim, T. , Kaviany, M. , Son, S. Y. , and Kim, M. , 2012, “ Breakthrough/Drainage Pressures and X-Ray Water Visualization in Gas Diffusion Layer of PEMFC,” Curr. Appl. Phys., 12(1), pp. 105–108. [CrossRef]
Flückiger, R. , Freunberger, S. A. , Kramer, D. , Wokaun, A. , Scherer, G. G. , and Büchi, F. N. , 2008, “ Anisotropic, Effective Diffusivity of Porous Gas Diffusion Layer Materials for PEFC,” Electrochim. Acta, 54(2), pp. 551–559. [CrossRef]
LaManna, J. M. , and Kandlikar, S. G. , “ Determination of Effective Water Vapor Diffusion Coefficient in PEMFC Gas Diffusion Layers,” Int. J. Hydrogen Energy, 28, pp. 5021–5029.
Hwang, G. S. , and Weber, A. Z. , 2012, “ Effective-Diffusivity Measurement of Partially-Saturated Fuel-Cell Gas-Diffusion Layers,” J. Electrochem. Soc., 159(11), pp. F683–F692. [CrossRef]
Gostick, J. T. , Fowler, M. W. , Pritzker, M. D. , Ioannidis, M. A. , and Behra, L. M. , 2006, “ In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers,” J. Power Sources, 162(1), pp. 228–238. [CrossRef]
Gurau, V. , Bluemle, M. J. , De Castro, E. S. , Tsou, Y.-M. , Zawodzinski, T. A., Jr. , and Mann, J. A., Jr. , 2007, “ Characterization of Transport Properties in Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells—2: Absolute Permeability,” J. Power Sources, 165(2), pp. 793–802. [CrossRef]
Sadeghifar, H. , Djilali, N. , and Bahrami, M. , 2014, “ Effect of Polytetrafluoroethylene (PTFE) and Micro Porous Layer (MPL) on Thermal Conductivity of Fuel Cell Gas Diffusion Layers: Modeling and Experiments,” J. Power Sources, 248, pp. 632–641. [CrossRef]
Alhazmi, N. , Ismail, M. S. , Ingham, D. B. , Hughes, K. J. , Ma, L. , and Pourkashanian, M. , 2013, “ The In-Plane Thermal Conductivity and the Contact Resistance of the Components of the Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cells,” J. Power Sources, 241, pp. 136–145. [CrossRef]
Unsworth, G. , Zamel, N. , and Li, X. , 2012, “ Through-Plane Thermal Conductivity of the Microporous Layer in a Polymer Electrolyte Membrane Fuel Cell,” Int. J. Hydrogen Energy, 37(6), pp. 5161–5169. [CrossRef]
Radhakrishnan, A. , Lu, Z. , and Kandlikar, S. G. , 2010, “ Effective Thermal Conductivity of Gas Diffusion Layers Used in PEMFC: Measured With Guarded-Hot-Plate Method and Predicted by a Fractal Model,” ECS Trans., 33(1), pp. 1163–1176.
Khandelwal, M. , and Mench, M. M. , 2006, “ Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials,” J. Power Sources, 161(2), pp. 1106–1115. [CrossRef]
Xu, G. , LaManna, J. M. , Clement, J. T. , and Mench, M. M. , 2014, “ Direct Measurement of Through-Plane Thermal Conductivity of Partially Saturated Fuel Cell Diffusion Media,” J. Power Sources, 256, pp. 212–219. [CrossRef]
Bazylak, A. , 2009, “ Liquid Water Visualization in PEM Fuel Cells: A Review,” Int. J. Hydrogen Energy, 34(9), pp. 3845–3857. [CrossRef]
Kim, S.-G. , and Lee, S.-J. , 2013, “ A Review on Experimental Evaluation of Water Management in a Polymer Electrolyte Fuel Cell Using X-Ray Imaging Technique,” J. Power Sources, 230, pp. 101–108. [CrossRef]
Pekula, N. , Heller, K. , Chuang, P. A. , Turhan, A. , Mench, M. M. , Brenizer, J. S. , and Ünlü, K. , 2005, “ Study of Water Distribution and Transport in a Polymer Electrolyte Fuel Cell Using Neutron Imaging,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 542, Elsevier, Amsterdam, The Netherlands, pp. 134–141. [CrossRef]
Boillat, P. , Kramer, D. , Seyfang, B. C. , Frei, G. , Lehmann, E. , Scherer, G. G. , Wokaun, A. , Ichikawa, Y. , Tasaki, Y. , and Shinohara, K. , 2008, “ In Situ Observation of the Water Distribution Across a PEFC Using High Resolution Neutron Radiography,” Electrochem. Commun., 10(4), pp. 546–550. [CrossRef]
Hickner, M. A. , Siegel, N. P. , Chen, K. S. , Hussey, D. S. , Jacobson, D. L. , and Arif, M. , 2008, “ In Situ High-Resolution Neutron Radiography of Cross-Sectional Liquid Water Profiles in Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc., 155(4), pp. B427–B434. [CrossRef]
Lu, Z. , Waldecker, J. , Xie, X. , Lai, M.-C. , Hussey, D. S. , and Jacobson, D. L. , 2013, “ Investigation of Water Transport in Perforated Gas Diffusion Layer by Neutron Radiography,” ECS Trans., 58(1), pp. 315–324. [CrossRef]
Kotaka, T. , Tabuchi, Y. , Pasaogullari, U. , and Wang, C.-Y. , 2014, “ Impact of Interfacial Water Transport in PEMFCs on Cell Performance,” Electrochim. Acta, 146, pp. 618–629. [CrossRef]
Cooper, N. J. , Santamaria, A. D. , Becton, M. K. , and Park, J. W. , “ Neutron Radiography Measurements of in-Situ PEMFC Liquid Water Saturation in 2D & 3D Morphology Gas Diffusion Layers,” Int. J. Hydrogen Energy, 42(25), pp. 169269–16278.
Manke, I. , Hartnig, C. , Grünerbel, M. , Lehnert, W. , Kardjilov, N. , Haibel, A. , Hilger, A. , Banhart, J. , and Riesemeier, H. , 2007, “ Investigation of Water Evolution and Transport in Fuel Cells With High Resolution Synchrotron X-Ray Radiography,” Appl. Phys. Lett., 90(17), p. 174105. [CrossRef]
Hinebaugh, J. , Lee, J. , and Bazylak, A. , 2012, “ Visualizing Liquid Water Evolution in a PEM Fuel Cell Using Synchrotron X-Ray Radiography,” J. Electrochem. Soc., 159(12), pp. F826–F830. [CrossRef]
Lee, J. , Hinebaugh, J. , and Bazylak, A. , 2013, “ Synchrotron X-Ray Radiographic Investigations of Liquid Water Transport Behavior in a PEMFC With MPL-Coated GDLs,” J. Power Sources, 227, pp. 123–130. [CrossRef]
Eller, J. , Roth, J. , Marone, F. , Stampanoni, M. , Wokaun, A. , and Büchi, F. N. , 2011, “ Towards Ultra-Fast X-Ray Tomographic Microscopy of Liquid Water in PEFC,” ECS Trans., 41(1), pp. 387–394.
Eller, J. , Rosén, T. , Marone, F. , Stampanoni, M. , Wokaun, A. , and Büchi, F. N. , 2011, “ Progress in In Situ X-Ray Tomographic Microscopy of Liquid Water in Gas Diffusion Layers of PEFC,” J. Electrochem. Soc., 158(8), pp. B963–B970. [CrossRef]
Sasabe, T. , Tsushima, S. , and Hirai, S. , 2010, “ In-Situ Visualization of Liquid Water in an Operating PEMFC by Soft X-Ray Radiography,” Int. J. Hydrogen Energy, 35(20), pp. 11119–11128. [CrossRef]
Deevanhxay, P. , Sasabe, T. , Tsushima, S. , and Hirai, S. , 2011, “ Investigation of Water Accumulation and Discharge Behaviors With Variation of Current Density in PEMFC by High-Resolution Soft X-Ray Radiography,” Int. J. Hydrogen Energy, 36(17), pp. 10901–10907. [CrossRef]
Haußmann, J. , Markötter, H. , Alink, R. , Bauder, A. , Dittmann, K. , Manke, I. , and Scholta, J. , 2013, “ Synchrotron Radiography and Tomography of Water Transport in Perforated Gas Diffusion Media,” J. Power Sources, 239, pp. 611–622. [CrossRef]
Banerjee, R. , Ge, N. , Lee, J. , George, M. G. , Chevalier, S. , Liu, H. , Shrestha, P. , Muirhead, D. , and Bazylak, A. , 2017, “ Transient Liquid Water Distributions in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Observed Through In-Operando Synchrotron X-Ray Radiography,” J. Electrochem. Soc., 164(2), pp. F154–F162. [CrossRef]
Tötzke, C. , Gaiselmann, G. , Osenberg, M. , Bohner, J. , Arlt, T. , Markötter, H. , Hilger, A. , Wieder, F. , Kupsch, A. , Müller, B. R. , Hentschel, M. P. , Banhart, J. , Schmidt, V. , Lehnert, W. , and Manke, I. , 2014, “ Three-Dimensional Study of Compressed Gas Diffusion Layers Using Synchrotron X-Ray Imaging,” J. Power Sources, 253, pp. 123–131. [CrossRef]
Dunbar, Z. , and Masel, R. I. , 2007, “ Quantitative MRI Study of Water Distribution During Operation of a PEM Fuel Cell Using Teflon® Flow Fields,” J. Power Sources, 171(2), pp. 678–687. [CrossRef]
Minard, K. R. , Viswanathan, V. V. , Majors, P. D. , Wang, L.-Q. , and Rieke, P. C. , 2006, “ Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold Flooding During Continuous Fuel Cell Operation,” J. Power Sources, 161(2), pp. 856–863. [CrossRef]
Tüber, K. , Pócza, D. , and Hebling, C. , 2003, “ Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell,” J. Power Sources, 124(2), pp. 403–414. [CrossRef]
Hussaini, I. S. , and Wang, C.-Y. , 2009, “ Visualization and Quantification of Cathode Channel Flooding in PEM Fuel Cells,” J. Power Sources, 187(2), pp. 444–451. [CrossRef]
Sergi, J. M. , Lu, Z. , and Kandlikar, S. G. , 2009, “ In Situ Characterization of Two-Phase Flow in Cathode Channels of an Operating PEM Fuel Cell With Visual Access,” ASME Paper No. ICNMM2009-82140.
Sergi, J. M. , and Kandlikar, S. G. , 2011, “ Quantification and Characterization of Water Coverage in PEMFC Gas Channels Using Simultaneous Anode and Cathode Visualization and Image Processing,” Int. J. Hydrogen Energy, 36(19), pp. 12381–12392. [CrossRef]
Banerjee, R. , and Kandlikar, S. G. , 2014, “ Liquid Water Quantification in the Cathode Side Gas Channels of a Proton Exchange Membrane Fuel Cell Through Two-Phase Flow Visualization,” J. Power Sources, 247, pp. 9–19. [CrossRef]
Escribano, S. , Blachot, J.-F. , Ethève, J. , Morin, A. , and Mosdale, R. , 2006, “ Characterization of PEMFCs Gas Diffusion Layers Properties,” J. Power Sources, 156(1), pp. 8–13. [CrossRef]
Chevalier, S. , Ge, N. , George, M. G. , Lee, J. , Banerjee, R. , Liu, H. , Shrestha, P. , Muirhead, D. , Hinebaugh, J. , Tabuchi, Y. , Kotaka, T. , and Bazylak, A. , 2017, “ Synchrotron X-Ray Radiography as a Highly Precise and Accurate Method for Measuring the Spatial Distribution of Liquid Water in Operating Polymer Electrolyte Membrane Fuel Cells,” J. Electrochem. Soc., 164(2), pp. F107–F114. [CrossRef]
Sasabe, T. , Deevanhxay, P. , Tsushima, S. , and Hirai, S. , 2011, “ Soft X-Ray Visualization of the Liquid Water Transport Within the Cracks of Micro Porous Layer in PEMFC,” Electrochem. Commun., 13(6), pp. 638–641. [CrossRef]
Deevanhxay, P. , Sasabe, T. , Tsushima, S. , and Hirai, S. , 2013, “ Observation of Dynamic Liquid Water Transport in the Microporous Layer and Gas Diffusion Layer of an Operating PEM Fuel Cell by High-Resolution Soft X-Ray Radiography,” J. Power Sources, 230, pp. 38–43. [CrossRef]
Markötter, H. , Haußmann, J. , Alink, R. , Tötzke, C. , Arlt, T. , Klages, M. , Riesemeier, H. , Scholta, J. , Gerteisen, D. , Banhart, J. , and Manke, I. , 2013, “ Influence of Cracks in the Microporous Layer on the Water Distribution in a PEM Fuel Cell Investigated by Synchrotron Radiography,” Electrochem. Commun., 34, pp. 22–24. [CrossRef]
Ge, N. , Chevalier, S. , Lee, J. , Yip, R. , Banerjee, R. , George, M. G. , Liu, H. , Lee, C. , Fazeli, M. , Antonacci, P. , Kotaka, T. , Tabuchi, Y. , and Bazylak, A. , 2017, “ Non-Isothermal Two-Phase Transport in a Polymer Electrolyte Membrane Fuel Cell With Crack-Free Microporous Layers,” Int. J. Heat Mass Transfer, 107, pp. 418–431. [CrossRef]
Antonacci, P. , Chevalier, S. , Lee, J. , Ge, N. , Hinebaugh, J. , Yip, R. , Tabuchi, Y. , Kotaka, T. , and Bazylak, A. , 2016, “ Balancing Mass Transport Resistance and Membrane Resistance When Tailoring Microporous Layer Thickness for Polymer Electrolyte Membrane Fuel Cells Operating at High Current Densities,” Electrochim. Acta, 188, pp. 888–897. [CrossRef]
Lee, J. , Yip, R. , Antonacci, P. , Ge, N. , Kotaka, T. , Tabuchi, Y. , and Bazylak, A. , 2015, “ Synchrotron Investigation of Microporous Layer Thickness on Liquid Water Distribution in a PEM Fuel Cell,” J. Electrochem. Soc., 162(7), pp. F669–F676. [CrossRef]
Zenyuk, I. V. , Parkinson, D. Y. , Hwang, G. , and Weber, A. Z. , 2015, “ Probing Water Distribution in Compressed Fuel-Cell Gas-Diffusion Layers Using X-Ray Computed Tomography,” Electrochem. Commun., 53, pp. 24–28. [CrossRef]
Eller, J. , and Büchi, F. N. , 2016, “ Characterization of Water Cluster Connectivity and Fluid Transport in PEFC Gas Diffusion Layers,” Meet. Abstr., MA2016-02(38), p. 2494.
Eller, J. , 2013, “ X-Ray Tomographic Microscopy of Polymer Electrolyte Fuel Cells,” Ph.D. thesis, ETH Zürich, Zürich, Switzerland.
Hinebaugh, J. , Lee, J. , Mascarenhas, C. , and Bazylak, A. , 2015, “ Quantifying Percolation Events in PEM Fuel Cell Using Synchrotron Radiography,” Electrochim. Acta, 184, pp. 417–426. [CrossRef]
Muirhead, D. , Banerjee, R. , Lee, J. , George, M. G. , Ge, N. , Liu, H. , Chevalier, S. , Hinebaugh, J. , and Bazylak, A. , 2017, “ Simultaneous Characterization of Oxygen Transport Resistance and Spatially Resolved Liquid Water Saturation at High-Current Density of Polymer Electrolyte Membrane Fuel Cells With Varied Cathode Relative Humidity,” Int. J. Hydrogen Energy (Submitted).
Liu, H. , George, M. G. , Banerjee, R. , Ge, N. , Lee, J. , Muirhead, D. , Shrestha, P. , Chevalier, S. , Hinebaugh, J. , Zeis, R. , Messerschmidt, M. , Scholta, J. , and Bazylak, A. , 2017, “ Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers—Part 2: Steady State Liquid Water Distributions With in Operando Synchrotron X-Ray Radiography,” J. Electrochem. Soc., 164, pp. F704–F713.
Schweiss, R. , Meiser, C. , Damjanovic, T. , Galbiati, I. , and Haak, N. , 2016, SIGRACET Gas Diffusion Layers for PEM Fuel Cells, Electrolyzers and Batteries, SGL Carbon GmbH, Meitingen, Germany.
Ostadi, H. , Rama, P. , Liu, Y. , Chen, R. , Zhang, X. X. , and Jiang, K. , 2010, “ 3D Reconstruction of a Gas Diffusion Layer and a Microporous Layer,” J. Membr. Sci., 351(1–2), pp. 69–74. [CrossRef]
Andisheh-Tadbir, M. , Orfino, F. P. , and Kjeang, E. , 2016, “ Three-Dimensional Phase Segregation of Micro-Porous Layers for Fuel Cells by Nano-Scale X-Ray Computed Tomography,” J. Power Sources, 310, pp. 61–69. [CrossRef]
Banerjee, R. , Howe, D. , Mejia, V. , and Kandlikar, S. G. , 2014, “ Experimental Validation of Two-Phase Pressure Drop Multiplier as a Diagnostic Tool for Characterizing PEM Fuel Cell Performance,” Int. J. Hydrogen Energy, 39(31), pp. 17791–17801. [CrossRef]
Banerjee, R. , Ge, N. , Lee, J. , George, M. G. , Liu, H. , Muirhead, D. , Shrestha, P. , Chevalier, S. , Hinebaugh, J. , and Bazylak, A. , 2016, “ Determining the Impact of Dynamic Load Conditions on Interfacial Liquid Water Accumulation in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Using Synchrotron X-Ray Radiography,” ECS Trans., 75(14), pp. 251–259. [CrossRef]
Wysokinski, T. W. , Chapman, D. , Adams, G. , Renier, M. , Suortti, P. , and Thomlinson, W. , 2007, “ Beamlines of the Biomedical Imaging and Therapy Facility at the Canadian Light Source—Part 1,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 582, Elsevier, Amsterdam, The Netherlands, pp. 73–76.
Ge, N. , Chevalier, S. , Hinebaugh, J. , Yip, R. , Lee, J. , Antonacci, P. , Kotaka, T. , Tabuchi, Y. , and Bazylak, A. , 2016, “ Calibrating the X-Ray Attenuation of Liquid Water and Correcting Sample Movement Artefacts During in Operando Synchrotron X-Ray Radiographic Imaging of Polymer Electrolyte Membrane Fuel Cells,” J. Synchrotron Radiat., 23(2), pp. 590–599. [CrossRef] [PubMed]
Hinebaugh, J. , Challa, P. R. , and Bazylak, A. , 2012, “ Accounting for Low-Frequency Synchrotron X-Ray Beam Position Fluctuations for Dynamic Visualizations,” J. Synchrotron Radiat., 19(6), pp. 994–1000. [CrossRef] [PubMed]
Mason, T. J. , Millichamp, J. , Shearing, P. R. , and Brett, D. J. L. , 2013, “ A Study of the Effect of Compression on the Performance of Polymer Electrolyte Fuel Cells Using Electrochemical Impedance Spectroscopy and Dimensional Change Analysis,” Int. J. Hydrogen Energy, 38(18), pp. 7414–7422. [CrossRef]
Sassin, M. B. , Garsany, Y. , Gould, B. D. , and Swider-Lyons, K. , 2016, “ Impact of Compressive Stress on MEA Pore Structure and Its Consequence on PEMFC Performance,” J. Electrochem. Soc., 163(8), pp. F808–F815. [CrossRef]
Zhou, Y. , Lin, G. , Shih, A. J. , and Hu, S. J. , 2009, “ Assembly Pressure and Membrane Swelling in PEM Fuel Cells,” J. Power Sources, 192(2), pp. 544–551. [CrossRef]
Owejan, J. P. , Trabold, T. A. , and Mench, M. M. , 2014, “ Oxygen Transport Resistance Correlated to Liquid Water Saturation in the Gas Diffusion Layer of PEM Fuel Cells,” Int. J. Heat Mass Transfer, 71, pp. 585–592. [CrossRef]
Owejan, J. P. , Gagliardo, J. J. , Sergi, J. M. , Kandlikar, S. G. , and Trabold, T. A. , 2009, “ Water Management Studies in PEM Fuel Cells—Part I: Fuel Cell Design and in Situ Water Distributions,” Int. J. Hydrogen Energy, 34(8), pp. 3436–3444. [CrossRef]
Hui, L. , Yanghua, T. , Zhenwei, W. , Zheng, S. , Shaohong, W. , Datong, S. , Jianlu, Z. , Fatih, K. , Jiujun, Z. , Haijiang, W. , Zhongsheng, L. , Abouatallah, R. , and Mazza, A. , 2008, “ A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell,” J. Power Sources, 178(1), pp. 103–17. [CrossRef]
Baker, D. R. , Caulk, D. A. , Neyerlin, K. C. , and Murphy, M. W. , 2009, “ Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods,” J. Electrochem. Soc., 156(9), pp. B991–B1003. [CrossRef]
Owejan, J. P. , Owejan, J. E. , Gu, W. , Trabold, T. A. , Tighe, T. W. , and Mathias, M. F. , 2010, “ Water Transport Mechanisms in PEMFC Gas Diffusion Layers,” J. Electrochem. Soc., 157(10), pp. B1456–B1464. [CrossRef]
Weber, A. Z. , and Newman, J. , 2005, “ Effects of Microporous Layers in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., 152(4), pp. A677–A688. [CrossRef]
Lin, G. , and Nguyen, T. V. , 2006, “ A Two-Dimensional Two-Phase Model of a PEM Fuel Cell,” J. Electrochem. Soc., 153(2), pp. A372–A382. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of X-ray CT setup

Grahic Jump Location
Fig. 2

Example porosity profile of SGL 10 BC, showing the individual solid fraction for the carbon fiber and MPL phases

Grahic Jump Location
Fig. 3

Cross-sectional slices of the GDL in the in-plane and through-plane directions for (a) SGL 10 BA, (b) SGL 10 BC, (c) SGL 25 BA, and (d) SGL 25 BC. Black represents fiber, orange represents MPL, and white is void space. Please see online figures for references to color.

Grahic Jump Location
Fig. 4

Schematic of the imaging setup for the fuel cell. The scale bar on the radiograph is 1 mm long.

Grahic Jump Location
Fig. 5

Profiles for the solid fractions of (a) uncompressed GDL, and (b) compressed GDL. The void space above the solid fractions represents the porous region of the GDL. The x = 0 μm through-plane position corresponds to the outer surface of the GDL. The first solid fraction value shown (where x > 0 μm) corresponds to the half-width location of the first voxel.

Grahic Jump Location
Fig. 6

Normalized water thickness measured in GDL regions through X-ray radiography during fuel cell operation: (a) SGL 10 BA—channel, (b) SGL 25 BA—channel, (c) SGL 10 BA—land, and (d) SGL 25 BA—Land. Shaded region indicates position of the membrane.

Grahic Jump Location
Fig. 7

Normalized water thickness measured from X-ray radiography during fuel cell operation: (a) SGL 10 BC—channel, (b) SGL 25 BC—channel, (c) SGL 10 BC—land, and (d) SGL 25 BC—land. Shaded region indicates position of the membrane.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In