0
Review Article

Mesoscale Physicochemical Interactions in Lithium–Sulfur Batteries: Progress and Perspective

[+] Author and Article Information
Zhixiao Liu

Energy and Transport Sciences Laboratory,
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77840
e-mail: liuzhixiao1985@tamu.edu

Aashutosh Mistry

Mem. ASME
Energy and Transport Sciences Laboratory,
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77840
e-mail: aashutoshmistry91@tamu.edu

Partha P. Mukherjee

Mem. ASME
Energy and Transport Laboratory,
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77840
e-mail: pmukherjee@tamu.edu

1Corresponding author.

2Present address: School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Manuscript received May 15, 2017; final manuscript received August 28, 2017; published online October 4, 2017. Assoc. Editor: William Mustain.

J. Electrochem. En. Conv. Stor. 15(1), 010802 (Oct 04, 2017) (10 pages) Paper No: JEECS-17-1049; doi: 10.1115/1.4037785 History: Received May 15, 2017; Revised August 28, 2017

The shuttle effect and poor conductivity of the discharge products are among the primary impediments and scientific challenges for lithium–sulfur batteries. The lithium–sulfur battery is a complex energy storage system, which involves multistep electrochemical reactions, insoluble polysulfide precipitation in the cathode, soluble polysulfide transport, and self-discharge caused by chemical reactions between polysulfides and Li metal anode. These phenomena happen at different length and time-scales and are difficult to be entirely gauged by experimental techniques. In this paper, we reviewed the multiscale modeling studies on lithium–sulfur batteries: (1) the atomistic simulations were employed to seek alternative materials for mitigating the shuttle effect; (2) the growth kinetics of Li2S film and corresponding surface passivation were investigated by the interfacial model based on findings from atomistic simulations; (3) the nature of Li2S2, which is the only solid intermediate product, was revealed by the density functional theory simulation; and (4) macroscale models were developed to analyze the effect of reaction kinetics, sulfur loading, and transport properties on the cell performance. The challenge for the multiscale modeling approach is translating the microscopic information from atomistic simulations and interfacial model into the meso-/macroscale model for accurately predicting the cell performance.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tarascon, J.-M. , and Armand, M. , 2001, “ Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature, 414(6861), pp. 359–367. [CrossRef] [PubMed]
Dunn, B. , Kamath, H. , and Tarascon, J. M. , 2011, “ Electrical Energy Storage for the Grid: A Battery of Choices,” Science, 334(6058), pp. 928–935. [CrossRef] [PubMed]
Bruce, P. G. , Freunberger, S. A. , Hardwick, L. J. , and Tarascon, J.-M. , 2012, “ Li-O2 and Li-S Batteries With High Energy Storage,” Nat. Mater., 11(1), pp. 19–29. [CrossRef]
Hannan, M. A. , Hoque, M. M. , Mohamed, A. , and Ayob, A. , 2017, “ Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges,” Renewable Sustainable Energy Rev., 69, pp. 771–789. [CrossRef]
Hussain, A. , Arif, S. M. , and Aslam, M. , 2017, “ Emerging Renewable and Sustainable Energy Technologies: State of the Art,” Renewable Sustainable Energy Rev., 71, pp. 12–28. [CrossRef]
Fjelstul, J. , 2014, “ Vehicle Electrification: On the “Green” Road to Destination Sustainability,” J. Destination Mark. Manag., 3(3), pp. 137–139. [CrossRef]
Etacheri, V. , Marom, R. , Elazari, R. , Salitra, G. , and Aurbach, D. , 2011, “ Challenges in the Development of Advanced Li-Ion Batteries: A Review,” Energy Environ. Sci., 4(9), pp. 3243–3262. [CrossRef]
Lu, L. G. , Han, X. B. , Li, J. Q. , Hua, J. F. , and Ouyang, M. G. , 2013, “ A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles,” J. Power Sources, 226, pp. 272–288. [CrossRef]
Yang, H. , Amiruddin, S. , Bang, H. J. , Sun, Y. K. , and Prakash, J. , 2006, “ A Review of Li-Ion Cell Chemistries and Their Potential Use in Hybrid Electric Vehicles,” J. Ind. Eng. Chem., 12(1), pp. 12–38.
Barghamadi, M. , Kapoor, A. , and Wen, C. , 2013, “ A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery,” J. Electrochem. Soc., 160(8), pp. A1256–A1263. [CrossRef]
Nagata, H. , and Chikusa, Y. , 2014, “ A Lithium Sulfur Battery With High Power Density,” J. Power Sources, 264, pp. 206–210. [CrossRef]
Wadia, C. , Albertus, P. , and Srinivasan, V. , 2011, “ Resource Constraints on the Battery Energy Storage Potential for Grid and Transportation Applications,” J. Power Sources, 196(3), pp. 1593–1598. [CrossRef]
Eithiraj, R. D. , Jaiganesh, G. , Kalpana, G. , and Rajagopalan, M. , 2007, “ First-Principles Study of Electronic Structure and Ground-State Properties of Alkali-Metal Sulfides—Li2s, Na2s, K2s and Rb2s,” Phys. Status Solidi (b), 244(4), pp. 1337–1346. [CrossRef]
Yang, Y. , Zheng, G. Y. , and Cui, Y. , 2013, “ Nanostructured Sulfur Cathodes,” Chem. Soc. Rev., 42(7), pp. 3018–3032. [CrossRef] [PubMed]
Fan, F. Y. , Carter, W. C. , and Chiang, Y.-M. , 2015, “ Mechanism and Kinetics of Li2s Precipitation in Lithium–Sulfur Batteries,” Adv. Mater., 27(35), pp. 5203–5209. [CrossRef] [PubMed]
Mikhaylik, Y. V. , and Akridge, J. R. , 2004, “ Polysulfide Shuttle Study in the Li/S Battery System,” J. Electrochem. Soc., 151(11), pp. A1969–A1976. [CrossRef]
Fan, F. Y. , Pan, M. S. , Lau, K. C. , Assary, R. S. , Woodford, W. H. , Curtiss, L. A. , Carter, W. C. , and Chiang, Y.-M. , 2016, “ Solvent Effects on Polysulfide Redox Kinetics and Ionic Conductivity in Lithium-Sulfur Batteries,” J. Electrochem. Soc., 163(14), pp. A3111–A3116. [CrossRef]
Chen, J. , Han, K. S. , Henderson, W. A. , Lau, K. C. , Vijayakumar, M. , Dzwiniel, T. , Pan, H. , Curtiss, L. A. , Xiao, J. , and Mueller, K. T. , 2016, “ Restricting the Solubility of Polysulfides in Li‐S Batteries Via Electrolyte Salt Selection,” Adv. Energy Mater., 6(11), p. 1600160.
Camacho-Forero, L. E. , Smith, T. W. , and Balbuena, P. B. , 2016, “ Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces,” J. Phys. Chem. C, 121(1), pp. 182–194. [CrossRef]
Nandasiri, M. I. , Camacho-Forero, L. E. , Schwarz, A. M. , Shutthanandan, V. , Thevuthasan, S. , Balbuena, P. B. , Mueller, K. T. , and Murugesan, V. , 2017, “ In-Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li-S Batteries,” Chem. Mater., 29(11), pp. 4728–4737. [CrossRef]
Zhang, Q. , Wang, Y. , Seh, Z. W. , Fu, Z. , Zhang, R. , and Cui, Y. , 2015, “ Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries,” Nano Lett., 15(6), pp. 3780–3786. [CrossRef] [PubMed]
Li, Z. , and Yin, L. , 2015, “ Nitrogen-Doped MOF-Derived Micropores Carbon as Immobilizer for Small Sulfur Molecules as a Cathode for Lithium Sulfur Batteries With Excellent Electrochemical Performance,” ACS Appl. Mater. Interfaces, 7(7), pp. 4029–4038. [CrossRef] [PubMed]
Xiao, S. , Liu, S. , Zhang, J. , and Wang, Y. , 2015, “ Polyurethane-Derived N-Doped Porous Carbon With Interconnected Sheet-Like Structure as Polysulfide Reservoir for Lithium–Sulfur Batteries,” J. Power Sources, 293, pp. 119–126. [CrossRef]
Pang, Q. , Tang, J. , Huang, H. , Liang, X. , Hart, C. , Tam, K. C. , and Nazar, L. F. , 2015, “ A Nitrogen and Sulfur Dual-Doped Carbon Derived From Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries,” Adv. Mater., 27(39), pp. 6021–6028. [CrossRef] [PubMed]
Hou, T.-Z. , Peng, H.-J. , Huang, J.-Q. , Zhang, Q. , and Li, B. , 2015, “ The Formation of Strong-Couple Interactions Between Nitrogen-Doped Graphene and Sulfur/Lithium (Poly)Sulfides in Lithium-Sulfur Batteries,” 2D Mater., 2(1), p. 014011. [CrossRef]
Yang, J. , Wang, S. , Ma, Z. , Du, Z. , Li, C. , Song, J. , Wang, G. , and Shao, G. , 2015, “ Novel Nitrogen-Doped Hierarchically Porous Coralloid Carbon Materials as Host Matrixes for Lithium–Sulfur Batteries,” Electrochim. Acta, 159, pp. 8–15. [CrossRef]
Qiu, Y. , Rong, G. , Yang, J. , Li, G. , Ma, S. , Wang, X. , Pan, Z. , Hou, Y. , Liu, M. , Ye, F. , Li, W. , Seh, Z. W. , Tao, X. , Yao, H. , Liu, N. , Zhang, R. , Zhou, G. , Wang, J. , Fan, S. , Cui, Y. , and Zhang, Y. , 2015, “ Highly Nitridated Graphene–Li2s Cathodes With Stable Modulated Cycles,” Adv. Energy Mater., 5(23), p. 1501369.
Niu, S. , Lv, W. , Zhang, C. , Li, F. , Tang, L. , He, Y. , Li, B. , Yang, Q.-H. , and Kang, F. , 2015, “ A Carbon Sandwich Electrode With Graphene Filling Coated by N-Doped Porous Carbon Layers for Lithium-Sulfur Batteries,” J. Mater. Chem. A, 3(40), pp. 20218–20224. [CrossRef]
Ding, K. , Bu, Y. , Liu, Q. , Li, T. , Meng, K. , and Wang, Y. , 2015, “ Ternary-Layered Nitrogen-Doped Graphene/Sulfur/ Polyaniline Nanoarchitecture for the High-Performance of Lithium-Sulfur Batteries,” J. Mater. Chem. A, 3(15), pp. 8022–8027. [CrossRef]
Zhang, S. , Liu, M. , Ma, F. , Ye, F. , Li, H. , Zhang, X. , Hou, Y. , Qiu, Y. , Li, W. , Wang, J. , Wang, J. , and Zhang, Y. , 2015, “ A High Energy Density Li2s@C Nanocomposite Cathode With a Nitrogen-Doped Carbon Nanotube Top Current Collector,” J. Mater. Chem. A, 3(37), pp. 18913–18919. [CrossRef]
Zhao, Y. , Yin, F. , Zhang, Y. , Zhang, C. , Mentbayeva, A. , Umirov, N. , Xie, H. , and Bakenov, Z. , 2015, “ A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries,” Nanoscale Res. Lett., 10(1), pp. 1–6. [CrossRef] [PubMed]
Sun, F. , Wang, J. , Chen, H. , Li, W. , Qiao, W. , Long, D. , and Ling, L. , 2013, “ High Efficiency Immobilization of Sulfur on Nitrogen-Enriched Mesoporous Carbons for Li–S Batteries,” ACS Appl. Mater. Interfaces, 5(12), pp. 5630–5638. [CrossRef] [PubMed]
Sun, X. G. , Wang, X. , Mayes, R. T. , and Dai, S. , 2012, “ Lithium–Sulfur Batteries Based on Nitrogen‐Doped Carbon and an Ionic‐Liquid Electrolyte,” ChemSusChem, 5(10), pp. 2079–2085. [CrossRef] [PubMed]
Qiu, Y. , Li, W. , Zhao, W. , Li, G. , Hou, Y. , Liu, M. , Zhou, L. , Ye, F. , Li, H. , and Wei, Z. , 2014, “ High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene,” Nano Lett., 14(8), pp. 4821–4827. [CrossRef] [PubMed]
Song, J. , Xu, T. , Gordin, M. L. , Zhu, P. , Lv, D. , Jiang, Y.-B. , Chen, Y. , Duan, Y. , and Wang, D. , 2014, “ Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode With Exceptional Cycling Stability for Lithium-Sulfur Batteries,” Adv. Funct. Mater., 24(9), pp. 1243–1250. [CrossRef]
Song, J. , Feng, S. , Zhu, C. , Lee, J.-I. , Fu, S. , Dong, P. , Song, M. K. , and Lin, Y. , 2017, “ Tuning the Structure and Composition of Graphite-Phase Polymeric Carbon Nitride/Reduced Graphene Oxide Composites Towards Enhanced Lithium-Sulfur Batteries Performance,” Electrochim. Acta, 248, pp. 541–546.
Zhou, G. , Paek, E. , Hwang, G. S. , and Manthiram, A. , 2015, “ High‐Performance Lithium‐Sulfur Batteries With a Self‐Supported, 3D Li2s‐Doped Graphene Aerogel Cathodes,” Adv. Energy Mater., 6(2), p. 1501355.
Xie, Y. , Meng, Z. , Cai, T. , and Han, W.-Q. , 2015, “ Effect of Boron-Doping on the Graphene Aerogel Used as Cathode for the Lithium–Sulfur Battery,” ACS Appl. Mater. Interfaces, 7(45), pp. 25202–25210. [CrossRef] [PubMed]
Song, J. , Yu, Z. , Gordin, M. L. , and Wang, D. , 2016, “ Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries,” Nano Lett., 16(2), pp. 864–870. [CrossRef] [PubMed]
Song, J. , Gordin, M. L. , Xu, T. , Chen, S. , Yu, Z. , Sohn, H. , Lu, J. , Ren, Y. , Duan, Y. , and Wang, D. , 2015, “ Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen‐Doped Carbon Composites for High‐Performance Lithium–Sulfur Battery Cathodes,” Angew. Chem. Int. Ed., 54(14), pp. 4325–4329. [CrossRef]
Zhu, P. , Song, J. , Lv, D. , Wang, D. , Jaye, C. , Fischer, D. A. , Wu, T. , and Chen, Y. , 2014, “ Mechanism of Enhanced Carbon Cathode Performance by Nitrogen Doping in Lithium–Sulfur Battery: An X-Ray Absorption Spectroscopic Study,” J. Phys. Chem. C, 118(15), pp. 7765–7771. [CrossRef]
Seh, Z. W. , Yu, J. H. , Li, W. , Hsu, P.-C. , Wang, H. , Sun, Y. , Yao, H. , Zhang, Q. , and Cui, Y. , 2014, “ Two-Dimensional Layered Transition Metal Disulphides for Effective Encapsulation of High-Capacity Lithium Sulphide Cathodes,” Nat. Commun., 5, p. 5017. [CrossRef] [PubMed]
Li, X. , Lu, Y. , Hou, Z. , Zhang, W. , Zhu, Y. , Qian, Y. , Liang, J. , and Qian, Y. , 2016, “ Sns2- Compared to Sno2-Stabilized S/C Composites Toward High-Performance Lithium Sulfur Batteries,” ACS Appl. Mater. Interfaces, 8(30), pp. 19550–19557. [CrossRef] [PubMed]
Li, Z. , Zhang, J. , and Lou, X. W. D. , 2015, “ Hollow Carbon Nanofibers Filled With Mno2 Nanosheets as Efficient Sulfur Hosts for Lithium–Sulfur Batteries,” Angew. Chem. Int. Ed., 54(44), pp. 12886–12890. [CrossRef]
Liang, X. , Garsuch, A. , and Nazar, L. F. , 2015, “ Sulfur Cathodes Based on Conductive Mxene Nanosheets for High‐Performance Lithium–Sulfur Batteries,” Angew. Chem. Int. Ed., 54(13), pp. 3907–3911. [CrossRef]
Ceder, G. , Chiang, Y.-M. , Sadoway, D. , Aydinol, M. , Jang, Y.-I. , and Huang, B. , 1998, “ Identification of Cathode Materials for Lithium Batteries Guided by First-Principles Calculations,” Nature, 392(6677), pp. 694–696. [CrossRef]
Meng, Y. S. , and Arroyo-de Dompablo, M. E. , 2009, “ First Principles Computational Materials Design for Energy Storage Materials in Lithium Ion Batteries,” Energy Environ. Sci., 2(6), pp. 589–609. [CrossRef]
Liang, X. , and Nazar, L. F. , 2016, “ In Situ Reactive Assembly of Scalable Core–Shell Sulfur–Mno2 Composite Cathodes,” ACS Nano, 10(4), pp. 4192–4198. [CrossRef] [PubMed]
Liu, Z. , Balbuena, P. B. , and Mukherjee, P. P. , 2016, “ Evaluating Silicene as a Potential Cathode Host to Immobilize Polysulfides in Lithium–Sulfur Batteries,” J. Coord. Chem., 69(11–13), pp. 2090–2105. [CrossRef]
Liu, Z. , Balbuena, P. B. , and Mukherjee, P. P. , 2017, “ Mesoscale Evaluation of Titanium Silicide Monolayer as a Cathode Host Material in Lithium–Sulfur Batteries,” JOM, 69(9), pp. 1532–1536. [CrossRef]
Liu, Z. X. , and Mukherjee, P. P. , 2017, “ Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode,” ACS Appl. Mater. Interfaces, 9(6), pp. 5263–5271. [CrossRef] [PubMed]
Dysart, A. D. , Burgos, J. C. , Mistry, A. , Chen, C.-F. , Liu, Z. , Hong, C. N. , Balbuena, P. B. , Mukherjee, P. P. , and Pol, V. G. , 2016, “ Towards Next Generation Lithium-Sulfur Batteries: Non-Conventional Carbon Compartments/Sulfur Electrodes and Multi-Scale Analysis,” J. Electrochem. Soc., 163(5), pp. A730–A741. [CrossRef]
Ghaznavi, M. , and Chen, P. , 2014, “ Sensitivity Analysis of a Mathematical Model of Lithium–Sulfur Cells—Part I: Applied Discharge Current and Cathode Conductivity,” J. Power Sources, 257, pp. 394–401. [CrossRef]
Ghaznavi, M. , and Chen, P. , 2014, “ Sensitivity Analysis of a Mathematical Model of Lithium–Sulfur Cells—Part II: Precipitation Reaction Kinetics and Sulfur Content,” J. Power Sources, 257, pp. 402–411. [CrossRef]
Wang, Z. , Niu, X. , Xiao, J. , Wang, C. , Liu, J. , and Gao, F. , 2013, “ First Principles Prediction of Nitrogen-Doped Carbon Nanotubes as a High-Performance Cathode for Li–S Batteries,” RSC Adv., 3(37), pp. 16775–16780. [CrossRef]
Zhao, J. , Yang, Y. , Katiyar, R. S. , and Chen, Z. , 2016, “ Phosphorene as a Promising Anchoring Material for Lithium-Sulfur Batteries: A Computational Study,” J. Mater. Chem. A, 4(16), pp. 6124–6130. [CrossRef]
Kara, A. , Leandri, C. , Davila, M. , Padova, P. , Ealet, B. , Oughaddou, H. , Aufray, B. , and Lay, G. , 2009, “ Physics of Silicene Stripes,” J. Supercond. Novel Magn., 22(3), pp. 259–263. [CrossRef]
Aufray, B. , Kara, A. , Vizzini, S. , Oughaddou, H. , Leandri, C. , Ealet, B. , and Le Lay, G. , 2010, “ Graphene-Like Silicon Nanoribbons on Ag(110): A Possible Formation of Silicene,” Appl. Phys. Lett., 96(18), p. 183102.
De Padova, P. , Quaresima, C. , Ottaviani, C. , Sheverdyaeva, P. M. , Moras, P. , Carbone, C. , Topwal, D. , Olivieri, B. , Kara, A. , Oughaddou, H. , Aufray, B. , and Le Lay, G. , 2010, “ Evidence of Graphene-Like Electronic Signature in Silicene Nanoribbons,” Appl. Phys. Lett., 96(26), p. 261905.
Mohan, B. , Kumar, A. , and Ahluwalia, P. K. , 2013, “ A First Principle Calculation of Electronic and Dielectric Properties of Electrically Gated Low-Buckled Mono and Bilayer Silicene,” Phys. E: Low-Dimens. Syst. Nanostruct., 53, pp. 233–239. [CrossRef]
Liu, Z. X. , Bertolin, S. , Balbuena, P. B. , and Mukherjee, P. P. , 2016, “ Li2s Film Formation on Lithium Anode Surface of Li-S Batteries,” ACS Appl. Mater. Interfaces, 8(7), pp. 4700–4708. [CrossRef] [PubMed]
Camacho-Forero, L. E. , Smith, T. W. , Bertolini, S. , and Balbuena, P. B. , 2015, “ Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries,” J. Phys. Chem. C, 119(48), pp. 26828–26839. [CrossRef]
Kamphaus, E. P. , and Balbuena, P. B. , 2016, “ Long-Chain Polysulfide Retention at the Cathode of Li–S Batteries,” J. Phys. Chem. C, 120(8), pp. 4296–4305. [CrossRef]
Hart, C. J. , Cuisinier, M. , Liang, X. , Kundu, D. , Garsuch, A. , and Nazar, L. F. , 2015, “ Rational Design of Sulphur Host Materials for Li–S Batteries: Correlating Lithium Polysulphide Adsorptivity and Self-Discharge Capacity Loss,” Chem. Commun., 51(12), pp. 2308–2311. [CrossRef]
Liang, X. , Hart, C. , Pang, Q. , Garsuch, A. , Weiss, T. , and Nazar, L. F. , 2015, “ A Highly Efficient Polysulfide Mediator for Lithium–Sulfur Batteries,” Nat. Commun., 6, p. 5682.
Albertus, P. , Girishkumar, G. , McCloskey, B. , Sánchez-Carrera, R. S. , Kozinsky, B. , Christensen, J. , and Luntz, A. C. , 2011, “ Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling,” J. Electrochem. Soc., 158(3), pp. A343–A351. [CrossRef]
Nichols, J. E. , and McCloskey, B. D. , 2016, “ The Sudden Death Phenomena in Nonaqueous Na-O2 Batteries,” J. Phys. Chem. C, 121(1), pp. 85–96. [CrossRef]
Viswanathan, V. , Thygesen, K. S. , Hummelshøj, J. , Nørskov, J. K. , Girishkumar, G. , McCloskey, B. , and Luntz, A. , 2011, “ Electrical Conductivity in Li2O2 and Its Role in Determining Capacity Limitations in Non-Aqueous Li-O2 Batteries,” J. Chem. Phys., 135(21), p. 214704. [CrossRef] [PubMed]
Liu, Z. X. , Hubble, D. , Balbuena, P. B. , and Mukherjee, P. P. , 2015, “ Adsorption of Insoluble Polysulfides Li2sx (X=1, 2) on Li2s Surfaces,” Phys. Chem. Chem. Phys., 17(14), pp. 9032–9039. [CrossRef] [PubMed]
Gerber, L. C. , Frischmann, P. D. , Fan, F. Y. , Doris, S. E. , Qu, X. , Scheuermann, A. , Persson, K. A. , Chiang, Y.-M. , and Helms, B. A. , 2015, “ 3-Dimensional Growth of Li2s in Lithium–Sulfur Batteries Promoted by a Redox Mediator,” Nano Lett., 16(1), pp. 549–554. [CrossRef] [PubMed]
Kumaresan, K. , Mikhaylik, Y. , and White, R. E. , 2008, “ A Mathematical Model for a Lithium–Sulfur Cell,” J. Electrochem. Soc., 155(8), pp. A576–A582. [CrossRef]
Xiao, J. , Hu, J. Z. , Chen, H. , Vijayakumar, M. , Zheng, J. , Pan, H. , Walter, E. D. , Hu, M. , Deng, X. , and Feng, J. , 2015, “ Following the Transient Reactions in Lithium–Sulfur Batteries Using an in Situ Nuclear Magnetic Resonance Technique,” Nano Lett., 15(5), pp. 3309–3316. [CrossRef] [PubMed]
Cunningham, P. , Johnson, S. , and Cairns, E. , 1972, “ Phase Equilibria in Lithium‐Chalcogen Systems—II: Lithium‐Sulfur,” J. Electrochem. Soc., 119(11), pp. 1448–1450. [CrossRef]
Park, H. , Koh, H. S. , and Siegel, D. J. , 2015, “ First-Principles Study of Redox End Members in Lithium–Sulfur Batteries,” J. Phys. Chem. C, 119(9), pp. 4675–4683. [CrossRef]
Feng, Z. M. , Kim, C. S. , Vijh, A. , Armand, M. , Bevan, K. H. , and Zaghib, K. , 2014, “ Unravelling the Role of Li2s2 in Lithium-Sulfur Batteries: A First Principles Study of Its Energetic and Electronic Properties,” J. Power Sources, 272, pp. 518–521. [CrossRef]
Yang, G. , Shi, S. , Yang, J. , and Ma, Y. , 2015, “ Insight into the Role of Li2 S2 in Li–S Batteries: A First-Principles Study,” J. Mater. Chem. A, 3(16), pp. 8865–8869. [CrossRef]
Liu, Z. , Balbuena, P. B. , and Mukherjee, P. P. , 2017, “ Revealing Charge Transport Mechanisms in Li2s2 for Li–Sulfur Batteries,” J. Phys. Chem. Lett., 8(7), pp. 1324–1330. [CrossRef] [PubMed]
Paolella, A. , Zhu, W. , Marceau, H. , Kim, C.-S. , Feng, Z. , Liu, D. , Gagnon, C. , Trottier, J. , Abdelbast, G. , Hovington, P. , Vijh, A. , Demopoulos, G. P. , Armand, M. , and Zaghib, K. , 2016, “ Transient Existence of Crystalline Lithium Disulfide Li2s2 in a Lithium-Sulfur Battery,” J. Power Sources, 325, pp. 641–645. [CrossRef]
Moradabadi, A. , and Kaghazchi, P. , 2016, “ Thermodynamics and Kinetics of Defects in Li2s,” Appl. Phys. Lett., 108(21), p. 213906. [CrossRef]
Lee, B. , Kim, J. , Yoon, G. , Lim, H.-D. , Choi, I.-S. , and Kang, K. , 2015, “ Theoretical Evidence for Low Charging Overpotentials of Superoxide Discharge Products in Metal–Oxygen Batteries,” Chem. Mater., 27(24), pp. 8406–8413. [CrossRef]
Barai, P. , Mistry, A. , and Mukherjee, P. P. , 2016, “ Poromechanical Effect in the Lithium–Sulfur Battery Cathode,” Extreme Mech. Lett., 9(Part 3), pp. 359–370. [CrossRef]
Okamoto, H. , 1995, “ The Li-S (Lithium-Sulfur) System,” J. Phase Equilib., 16(1), pp. 94–97. [CrossRef]
Kang, S. , Mo, Y. , Ong, S. P. , and Ceder, G. , 2014, “ Nanoscale Stabilization of Sodium Oxides: Implications for Na–O2 Batteries,” Nano Lett., 14(2), pp. 1016–1020. [CrossRef] [PubMed]
Brückner, J. , Thieme, S. , Grossmann, H. T. , Dörfler, S. , Althues, H. , and Kaskel, S. , 2014, “ Lithium–Sulfur Batteries: Influence of C-Rate, Amount of Electrolyte and Sulfur Loading on Cycle Performance,” J. Power Sources, 268, pp. 82–87. [CrossRef]
Yoo, K. , Song, M.-K. , Cairns, E. J. , and Dutta, P. , 2016, “ Numerical and Experimental Investigation of Performance Characteristics of Lithium/Sulfur Cells,” Electrochim. Acta, 213, pp. 174–185. [CrossRef]
Zhang, T. , Marinescu, M. , Walus, S. , and Offer, G. J. , 2016, “ Modelling Transport-Limited Discharge Capacity of Lithium-Sulfur Cells,” Electrochim. Acta, 219, pp. 502–508. [CrossRef]
Thangavel, V. , Xue, K.-H. , Mammeri, Y. , Quiroga, M. , Mastouri, A. , Guéry, C. , Johansson, P. , Morcrette, M. , and Franco, A. A. , 2016, “ A Microstructurally Resolved Model for Li-S Batteries Assessing the Impact of the Cathode Design on the Discharge Performance,” J. Electrochem. Soc., 163(13), pp. A2817–A2829. [CrossRef]
Ren, Y. X. , Zhao, T. S. , Liu, M. , Tan, P. , and Zeng, Y. K. , 2016, “ Modeling of Lithium-Sulfur Batteries Incorporating the Effect of Li2s Precipitation,” J. Power Sources, 336, pp. 115–125. [CrossRef]
Seh, Z. W. , Li, W. , Cha, J. J. , Zheng, G. , Yang, Y. , McDowell, M. T. , Hsu, P.-C. , and Cui, Y. , 2013, “ Sulphur–Tio2 Yolk–Shell Nanoarchitecture With Internal Void Space for Long-Cycle Lithium–Sulphur Batteries,” Nat. Commun., 4, p. 1331. [CrossRef] [PubMed]
Wang, H. , Yang, Y. , Liang, Y. , Robinson, J. T. , Li, Y. , Jackson, A. , Cui, Y. , and Dai, H. , 2011, “ Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material With High Capacity and Cycling Stability,” Nano Lett., 11(7), pp. 2644–2647. [CrossRef] [PubMed]
Ji, X. , Lee, K. T. , and Nazar, L. F. , 2009, “ A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries,” Nat. Mater., 8(6), pp. 500–506. [CrossRef] [PubMed]
Ji, X. , Evers, S. , Black, R. , and Nazar, L. F. , 2011, “ Stabilizing Lithium–Sulphur Cathodes Using Polysulphide Reservoirs,” Nat. Commun., 2, pp. 325–331. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Schematic diagram of a Li–S battery with main challenges. (b) A typical voltage profile and corresponding species evolution during the discharge process.

Grahic Jump Location
Fig. 2

(a) Adsorption energies of polysulfides on the graphene substrate. The black curve indicates that the adsorption energy is calculated without considering van der Waals interaction, and the red curve indicates that the adsorption is calculated with considering van der Waals interaction. The data points are adopted with permission from Ref. [21]. (b) Difference charge density distribution between Li2S4 molecule and V2O5 surface. Snapshots demonstrate the difference charge density of (b) Li2S4 on V2O5 surface and (c) Li2S4 on TiS2 surface. The difference charge density demonstrate electrons are transferred from the Li2S4 molecule to the cathode substrate. (Snapshots are adopted with permission from Ref. [21].)

Grahic Jump Location
Fig. 3

(a) Li2S surface energy as the function of applied potential (adopted with permission from Ref. [69]). The lowest surface energy indicates the most stable surface. (b) Energy profile of Li2S (111) plane formation on the graphene substrate (adopted with permission from Ref. [52]). The downhill profile represents an exothermic reaction path. (c) Snapshots in the upper row depict the simulation results of Li2S growth on carbon substrate with the coverage of 30%, 50%, and 90%. SEM images in the bottom row depict the morphology evolution of precipitated Li2S on carbon fiber cathode after 2.5 h, 4 h, and 6 h with potentiostatic discharge at 2.02 V. (Snapshots are adopted with permission from Ref. [51]. SEM images are adopted with permission from Ref. [15].)

Grahic Jump Location
Fig. 4

Effect of temperature on the morphology evolution of Li2S precipitation. (Snapshots are adopted with permission from Ref. [51].)

Grahic Jump Location
Fig. 5

Schematic diagram of polaron formation in Li2S2 (adopted with permission from Ref. [77])

Grahic Jump Location
Fig. 6

(a) SEM micrograph of carbon microstructure without sulfur loading; (b) stochastic regeneration of carbon microstructure; (c) SEM micrograph with sulfur loading; and (d) stochastic reconstruction of microstructure with sulfur loading. (e) The increase in sulfur loading can reduce the porosity and increase the tortuosity. (f) Discharge voltage profile and the porosity evolution predicted by the macroscale model. (Figures are adopted with permission from Ref. [52].)

Grahic Jump Location
Fig. 7

The schematic illustration of the hierarchical modeling philosophy for understanding multiscale interplays in a Li–S battery

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In