0
Research Papers

Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

[+] Author and Article Information
James B. Robinson

Electrochemical Innovation Lab,
Department of Chemical Engineering,
UCL,
London WC1E7JE, UK
e-mail: ucecrob@ucl.ac.uk

Donal P. Finegan

Electrochemical Innovation Lab,
Department of Chemical Engineering,
UCL,
London WC1E 7JE, UK;
National Renewable Energy Laboratory,
15013 Denver West Parkway,
Golden, CO 80401
e-mail: donal.finegan@nrel.gov

Thomas M. M. Heenan

Electrochemical Innovation Lab,
Department of Chemical Engineering,
UCL,
London WC1E7JE, UK
e-mail: thomas.heenan.11@ucl.ac.uk

Katherine Smith

Sharp Laboratories of Europe,
Oxford Science Park,
Edmund Halley Road,
Oxford OX4 4GB, Oxfordshire, UK
e-mail: katherine.smith@sharp.co.uk

Emma Kendrick

Sharp Laboratories of Europe,
Oxford Science Park,
Edmund Halley Road,
Oxford OX4 4GB, Oxfordshire, UK;
Electrochemical Innovation Lab,
Department of Chemical Engineering,
UCL,
London WC1E 7JE, UK;
Warwick Manufacturing Group,
University Road, University of Warwick,
Coventry CV4 7AL, UK
e-mail: emma.kendrick@ucl.ac.uk

Daniel J. L. Brett

Electrochemical Innovation Lab,
Department of Chemical Engineering,
UCL,
London WC1E7JE, UK
e-mail: d.brett@ucl.ac.uk

Paul R. Shearing

Electrochemical Innovation Lab,
Department of Chemical Engineering,
UCL,
London WC1E7JE, UK
e-mail: p.shearing@ucl.ac.uk

1Corresponding author.

Manuscript received July 20, 2017; final manuscript received October 4, 2017; published online December 6, 2017. Assoc. Editor: Matthew Mench.

J. Electrochem. En. Conv. Stor. 15(1), 011010 (Dec 06, 2017) (9 pages) Paper No: JEECS-17-1091; doi: 10.1115/1.4038518 History: Received July 20, 2017; Revised October 04, 2017

Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Armand, M. , and Tarascon, J.-M. , 2008, “ Building Better Batteries,” Nature, 451(7179), pp. 652–657. [CrossRef] [PubMed]
Lu, L. , Han, X. , Li, J. , Hua, J. , and Ouyang, M. , 2013, “ A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles,” J. Power Sources, 226, pp. 272–288. [CrossRef]
Scrosati, B. , Hassoun, J. , and Sun, Y.-K. , 2011, “ Lithium-Ion Batteries. A Look Into the Future,” Energy Environ. Sci., 4(9), pp. 3287–3295. [CrossRef]
Beauregard, G. P. , 2008, “Report of Investigation: Hybrids Plus Plug in Hybrid Electric Vehicle,” U.S. Department of Energy, Idaho National Laboratory, Idaho Falls, ID, Report No. 5903. http://www.carsandracingstuff.com/library/reports/5903.pdf
JTSB, 2014, “Aircraft Serious Incident Investigation Report,” All Nippon Airways Co., Ltd., Tokyo, Japan, Report No. JA804A. http://www.mlit.go.jp/jtsb/eng-air_report/JA4184.pdf
AAIB, 2015, “ Report on the Serious Incident to Boeing B787-8, ET-AOP London Heathrow Airport on 12 July 2013,” Ethiopian Airlines, Addis Ababa, Ethiopia, Report No. EW/C2013/07/01. https://assets.publishing.service.gov.uk/media/55d43f8d40f0b6091a000001/AAIB_2-2015_ET-AOP.pdf
NTSB, 2014, “Aircraft Incident Report, Auxiliary Power Unit Battery Fire, Japan Airlines Boeing 787-8, JA829J,” National Transportation Safety Board, Washington, DC, Report No. NTSB/AIR-14/01 https://www.ntsb.gov/investigations/AccidentReports/Reports/AIR1401.pdf.
Robinson, J. B. , Darr, J. A. , Eastwood, D. S. , Hinds, G. , Lee, P. D. , Shearing, P. R. , Taiwo, O. O. , and Brett, D. J. L ., 2014, “ Non-Uniform Temperature Distribution in Li-Ion Batteries During Discharge—A Combined Thermal Imaging, X-ray Micro-Tomography and Electrochemical Impedance Approach,” J. Power Sources, 252, pp. 51–57. [CrossRef]
Ellis, B. L. , Makahnouk, W. R. M. , Rowan-Weetaluktuk, W. N. , Ryan, D. H. , and Nazar, L. F. , 2010, “ Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni),” Chem. Mater., 22(3), pp. 1059–1070. [CrossRef]
U.S. Geological Survey, 2008, “Mineral Commodity Summaries 2008,” U.S. Geological Survey, Reston, VA.
Yang, Y. , Hu, X. , Qing, D. , and Chen, F. , 2013, “ Arrhenius Equation-Based Cell-Health Assessment: Application to Thermal Energy Management Design of a HEV NiMH Battery Pack,” Energies, 6(5), p. 2709. [CrossRef]
Khateeb, S. A. , Farid, M. M. , Selman, J. R. , and Al-Hallaj, S. , 2004, “ Design and Simulation of a Lithium-Ion Battery With a Phase Change Material Thermal Management System for an Electric Scooter,” J. Power Sources, 128(2), pp. 292–307. [CrossRef]
Galloway, R. C. , and Haslam, S. , 1999, “ The ZEBRA Electric Vehicle Battery: Power and Energy Improvements,” J. Power Sources, 80(1–2), pp. 164–170. [CrossRef]
Wang, J. , Yang, J. , Nuli, Y. , and Holze, R. , 2007, “ Room Temperature Na/S Batteries With Sulfur Composite Cathode Materials,” Electrochem. Commun., 9(1), pp. 31–34. [CrossRef]
Arlt, T. , Schroder, D. , Krewer, U. , and Manke, I. , 2014, “ In Operando Monitoring of the State of Charge and Species Distribution in Zinc Air Batteries Using X-ray Tomography and Model-Based Simulations,” Phys. Chem. Chem. Phys., 16(40), pp. 22273–22280. [CrossRef] [PubMed]
Lee, J.-S. , Tai Kim, S. , Cao, R. , Choi, N.-S. , Liu, M. , Lee, K. T. , and Cho, J. , 2011, “ Metal–Air Batteries With High Energy Density: Li–Air Versus Zn–Air,” Adv. Energy Mater., 1(1), pp. 34–50. [CrossRef]
Li, Y. , and Dai, H. , 2014, “ Recent Advances in Zinc-Air Batteries,” Chem. Soc. Rev., 43(15), pp. 5257–5275. [CrossRef] [PubMed]
Palomares, V. , Serras, P. , Villaluenga, I. , Hueso, K. B. , Carretero-Gonzalez, J. , and Rojo, T. , 2012, “ Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems,” Energy Environ. Sci., 5(3), pp. 5884–5901. [CrossRef]
Slater, M. D. , Kim, D. , Lee, E. , and Johnson, C. S. , 2013, “ Sodium-Ion Batteries,” Adv. Funct. Mater., 23(8), pp. 947–958. [CrossRef]
Barker, J. , and Wright, C. J. , 2016, “Storage and/or Transportation of Sodium-Ion Cells,” U. S. Patent No. WO2016027082 A1. https://www.google.com/patents/WO2016027082A1?cl=en
Stevens, D. A. , and Dahn, J. R. , 2000, “ High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries,” J. Electrochem. Soc., 147(4), pp. 1271–1273. [CrossRef]
Kubota, K. , and Komaba, S. , 2015, “ Review—Practical Issues and Future Perspective for Na-Ion Batteries,” J. Electrochem. Soc., 162(14), pp. A2538–A2550. [CrossRef]
Sun, Q. , Ren, Q.-Q. , Li, H. , and Fu, Z.-W. , 2011, “ High Capacity Sb2O4 Thin Film Electrodes for Rechargeable Sodium Battery,” Electrochem. Commun., 13(12), pp. 1462–1464. [CrossRef]
Xiao, L. , Cao, Y. , Xiao, J. , Wang, W. , Kovarik, L. , Nie, Z. , and Liu, J. , 2012, “ High Capacity, Reversible Alloying Reactions in SnSb/C Nanocomposites for Na-Ion Battery Applications,” Chem. Commun., 48(27), pp. 3321–3323. [CrossRef]
Jäckle, M. , and Groß, A. , 2014, “ Microscopic Properties of Lithium, Sodium, and Magnesium Battery Anode Materials Related to Possible Dendrite Growth,” J. Chem. Phys., 141(17), p. 174710. [CrossRef] [PubMed]
Ellis, B. L. , and Nazar, L. F. , 2012, “ Sodium and Sodium-Ion Energy Storage Batteries,” Curr. Opin. Solid State Mater. Sci., 16(4), pp. 168–177. [CrossRef]
Xiang, X. , Zhang, K. , and Chen, J. , 2015, “ Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries,” Adv. Mater., 27(36), pp. 5343–5364. [CrossRef] [PubMed]
Vignarooban, K. , Kushagra, R. , Elango, A. , Badami, P. , Mellander, B. E. , Xu, X. , Tucker, T. G. , Nam, C. , and Kannan, A. M. , 2016, “ Current Trends and Future Challenges of Electrolytes for Sodium-Ion Batteries,” Int. J. Hydrogen Energy, 41(4), pp. 2829–2846. [CrossRef]
Robinson, J. B. , Engebretsen, E. , Finegan, D. P. , Darr, J. , Hinds, G. , Shearing, P. R. , and Brett, D. J. L. , 2015, “ Detection of Internal Defects in Lithium-Ion Batteries Using Lock-In Thermography,” ECS Electrochem. Lett., 4(9), pp. A106–A109. [CrossRef]
Bandhauer, T. M. , Garimella, S. , and Fuller, T. F. , 2011, “ A Critical Review of Thermal Issues in Lithium-Ion Batteries,” J. Electrochem. Soc., 158(3), pp. R1–R25. [CrossRef]
Golubkov, A. W. , Fuchs, D. , Wagner, J. , Wiltsche, H. , Stangl, C. , Fauler, G. , Voitic, G. , Thaler, A. , and Hacker, V. , 2014, “ Thermal-Runaway Experiments on Consumer Li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes,” RSC Adv., 4(7), pp. 3633–3642. [CrossRef]
Eastwood, D. S. , Yufit, V. , Gelb, J. , Gu, A. , Bradley, R. S. , Harris, S. J. , Brett, D. J. L. , Brandon, N. P. , Lee, P. D. , Withers, P. J. , and Shearing, P. R. , 2014, “ Lithiation-Induced Dilation Mapping in a Lithium-Ion Battery Electrode by 3D X-Ray Microscopy and Digital Volume Correlation,” Adv. Energy Mater., 4(4), p. 1300506.
Vetter, J. , Novák, P. , Wagner, M. R. , Veit, C. , Möller, K. C. , Besenhard, J. O. , Winter, M. , Wohlfahrt-Mehrens, M. , Vogler, C. , and Hammouche, A. , 2005, “ Ageing Mechanisms in Lithium-Ion Batteries,” J. Power Sources, 147(1–2), pp. 269–281. [CrossRef]
Broussely, M. , Biensan, P. , Bonhomme, F. , Blanchard, P. , Herreyre, S. , Nechev, K. , and Staniewicz, R. J. , 2005, “ Main Aging Mechanisms in Li Ion Batteries,” J. Power Sources, 146(1–2), pp. 90–96. [CrossRef]
Finegan, D. P. , Scheel, M. , Robinson, J. B. , Tjaden, B. , Di Michiel, M. , Hinds, G. , Brett, D. J. L. , and Shearing, P. R. , 2016, “ Investigating Lithium-Ion Battery Materials During Overcharge-Induced Thermal Runaway: An Operando and Multi-Scale X-Ray CT Study,” Phys. Chem. Chem. Phys., 8(45), pp. 30912–30919. http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp04251a#!divAbstract
Finegan, D. P. , Scheel, M. , Robinson, J. B. , Tjaden, B. , Hunt, I. , Mason, T. J. , Millichamp, J. , Di Michiel, M. , Offer, G. J. , Hinds, G. , Brett, D. J. L. , and Shearing, P. R. , 2015, “ In-Operando High-Speed Tomography of Lithium-Ion Batteries During Thermal Runaway,” Nat. Commun., 6, p. 6924.
Finegan, D. P. , Tudisco, E. , Scheel, M. , Robinson, J. B. , Taiwo, O. O. , Eastwood, D. S. , Lee, P. D. , Di Michiel, M. , Bay, B. , Hall, S. A. , Hinds, G. , Brett, D. J. L. , and Shearing, P. R. , 2015, “ Quantifying Bulk Electrode Strain and Material Displacement Within Lithium Batteries Via High-Speed Operando Tomography and Digital Volume Correlation,” Adv. Sci., 3(3), p. 1500332.
Xia, X. , and Dahn, J. R. , 2012, “ NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries With Liquid Electrolytes,” Electrochem. Solid-State Lett., 15(1), pp. A1–A4. [CrossRef]
von Sacken, U. , Nodwell, E. , Sundher, A. , and Dahn, J. R. , 1995, “ Comparative Thermal Stability of Carbon Intercalation Anodes and Lithium Metal Anodes for Rechargeable Lithium Batteries,” J. Power Sources, 54(2), pp. 240–245. [CrossRef]
Maleki, H. , Deng, G. , Anani, A. , and Howard, J. , 1999, “ Thermal Stability Studies of Li‐Ion Cells and Components,” J. Electrochem. Soc., 146(9), pp. 3224–3229. [CrossRef]
Richard, M. N. , and Dahn, J. R. , 1999, “ Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte—II: Modeling the Results and Predicting Differential Scanning Calorimeter Curves,” J. Electrochem. Soc., 146(6), pp. 2078–2084. [CrossRef]
Smith, K. , Treacher, J. , Ledwoch, D. , Adamson, P. , and Kendrick, E. , 2017, “ Novel High Energy Density Sodium Layered Oxide Cathode Materials: From Material to Cells,” ECS Trans., 75(22), pp. 13–24. [CrossRef]
Chen, Z. , Qin, Y. , Ren, Y. , Lu, W. , Orendorff, C. , Roth, E. P. , and Amine, K. , 2011, “ Multi-Scale Study of Thermal Stability of Lithiated Graphite,” Energy Environ. Sci., 4(10), pp. 4023–4030. [CrossRef]
Orendorff, C. J. , 2012, “ The Role of Separators in Lithium-Ion Cell Safety,” Electrochem. Soc. Interface, 21(2), pp. 61–65. [CrossRef]
Finegan, D. P. , Cooper, S. J. , Tjaden, B. , Taiwo, O. O. , Gelb, J. , Hinds, G. , Brett, D. J. L. , and Shearing, P. R. , 2016, “ Characterising the Structural Properties of Polymer Separators for Lithium-Ion Batteries in 3D Using Phase Contrast X-ray Microscopy,” J. Power Sources, 333, pp. 184–192. [CrossRef]
Irisarri, E. , Ponrouch, A. , and Palacin, M. R. , 2015, “ Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries,” J. Electrochem. Soc., 162(14), pp. A2476–A2482. [CrossRef]
Guo, W.-M. , Xiao, H.-N. , and Zhang, G.-J. , 2008, “ Kinetics and Mechanisms of Non-Isothermal Oxidation of Graphite in Air,” Corros. Sci., 50(7), pp. 2007–2011. [CrossRef]
McKee, D. W. , 1970, “ Metal Oxides as Catalysts for the Oxidation of Graphite,” Carbon, 8(5), pp. 623–635. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

NIB cell suspended on wires in the calorimeter, also shown are the location of the thermocouples used for the ARC experiment on the front and rear of the cell

Grahic Jump Location
Fig. 2

SEM images of (a) pristine, and (b) failed, negative electrodes from the LCO cell, (c) pristine LiCoO2 positive electrode, (d) LiCoO2 positive electrode after thermal runaway has occurred. All images are obtained using the SE1 signal at 15 kV accelerating voltage with magnifications of approximately 10,000 yielding a pixel size of 29 nm in all cases.

Grahic Jump Location
Fig. 3

SEM images of (a) pristine, and (b) failed, negative electrodes from the LCO cell, (c) pristine LiCoO2 positive electrode, (d) LiCoO2 positive electrode after thermal runaway has occurred. All images are obtained using the SE1 signal at 15 kV accelerating voltage with magnifications of approximately 10,000 yielding a pixel size of 29 nm in all cases.

Grahic Jump Location
Fig. 4

Cell scale tomographic renderings of the charged ((a)–(c)) and failed ((d)–(f)) NIB cell and the charged ((g)–(i)) and failed LCO ((j)–(l)) showing the extent of deformation associated with thermal runaway

Grahic Jump Location
Fig. 5

Orthogonal slices showing the internal arrangement of electrode layers for charged NIB (a) and LCO (c) cells and the extent of deformation caused by thermal runaway for the same NIB (b) and LCO (d) cells

Grahic Jump Location
Fig. 6

NIB cell after ARC experiment-induced thermal runaway in the cell showing an (a) orthogonal view, (b) top view, (c) bottom view highlighting the swelling in the cell, and (d) top view showing the split which occurred in the pouch at the terminals

Grahic Jump Location
Fig. 7

SEM images of (a) pristine, and (b) failed, negative electrodes from the LCO cell, (c) pristine LiCoO2 positive electrode, (d) LiCoO2 positive electrode after thermal runaway has occurred. All images are obtained using the SE1 signal at 15 kV accelerating voltage with magnifications of approximately 10,000 yielding a pixel size of 29 nm in all cases.

Grahic Jump Location
Fig. 8

SEM images of (a) pristine, and (b) failed, negative electrodes from the LCO cell, (c) pristine LiCoO2 positive electrode, (d) LiCoO2 positive electrode after thermal runaway has occurred. All images are obtained using the SE1 signal at 15 kV accelerating voltage with magnifications of approximately 10,000 yielding a pixel size of 29 nm in all cases.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In