0
Research Papers

Self-Humidification of a Polymer Electrolyte Membrane Fuel Cell System With Cathodic Exhaust Gas Recirculation

[+] Author and Article Information
Liangfei Xu

State Key Laboratory of Automotive Safety and Energy,
Department of Automotive Engineering,
Tsinghua University,
Beijing 100084, China;
IEK-3: Electrochemical Process Engineering,
Institute of Energy and Climate Research,
Forschungszentrum Jülich GmbH,
Jülich 52425, Germany;
Collaborative Innovation Center
of Electric Vehicles in Beijing,
Beijing 100081, China
e-mail: xuliangfei@tsinghua.edu.cn

Chuan Fang

State Key Laboratory of Automotive Safety and Energy,
Department of Automotive Engineering,
Tsinghua University,
Beijing 100084, China;
Collaborative Innovation Center
of Electric Vehicles in Beijing,
Beijing 100081, China
e-mail: fangchuan1990@126.com

Junming Hu

State Key Laboratory of Automotive Safety and Energy,
Department of Automotive Engineering,
Tsinghua University,
Beijing 100084, China;
Collaborative Innovation Center
of Electric Vehicles in Beijing,
Beijing 100081, China
e-mail: pcg_hujunming@qq.com

Siliang Cheng

State Key Laboratory of Automotive Safety and Energy,
Department of Automotive Engineering,
Tsinghua University,
Beijing 100084, China;
Collaborative Innovation Center
of Electric Vehicles in Beijing,
Beijing 100081, China
e-mail: chengsl12@mails.tsinghua.edu.cn

Jianqiu Li

State Key Laboratory of Automotive Safety and Energy,
Department of Automotive Engineering,
Tsinghua University,
Beijing 100084, China;
Collaborative Innovation Center
of Electric Vehicles in Beijing,
Beijing 100081, China
e-mail: lijianqiu@tsinghua.edu.cn

Minggao Ouyang

State Key Laboratory of Automotive Safety and Energy,
Department of Automotive Engineering,
Tsinghua University,
Beijing 100084, China
e-mail: ouymg@tsinghua.edu.cn

Werner Lehnert

IEK-3: Electrochemical Process Engineering,
Institute of Energy and Climate Research,
Forschungszentrum Jülich GmbH,
Jülich 52425, Germany;
Modeling Electrochemical Process Engineering,
RWTH Aachen University,
Aachen 52062, Germany
e-mail: w.lehnert@fz-juelich.de

1Corresponding author.

Manuscript received August 17, 2016; final manuscript received August 22, 2017; published online February 6, 2018. Assoc. Editor: Jan Van herle.

J. Electrochem. En. Conv. Stor. 15(2), 021003 (Feb 06, 2018) (19 pages) Paper No: JEECS-16-1109; doi: 10.1115/1.4038628 History: Received August 17, 2016; Revised August 22, 2017

Water management is critical for the operation of a polymer electrolyte membrane fuel cell (PEMFC). For the purposes of high power and long working-lifetime of PEMFCs, external humidifiers are always utilized as a necessary part of balance of plants to keep the imported air and fuel wet. However, they have several disadvantages, and it is beneficial to remove them so as to reduce system volume and to enhance the cold-starting capability. In this paper, a self-humidified PEMFC of an active area 250 cm2 and cell number 320 is proposed and investigated. The imported dry air on the cathode side is mixed with moisty exhaust gas by using a recirculation valve, and the dry hydrogen on the anode side is humidified by back-diffusion water through the membrane. A nonlinear model is set up based on mass transport and energy conservation equations to capture dynamics of gases in the supply and exhaust manifolds, the gas diffusion layers (GDLs), and the membrane. An analysis is conducted to investigate the influences of parameters on dynamic and stable performances. Simulation results show that system performances can be greatly affected by parameters such as air stoichiometry, current density, exhaust gas recirculation (EGR) ratio, and membrane thickness. By accurately controlling the EGR ratio and carefully selecting design and operation parameters, it is probably for a PEMFC without an external humidifier to have similar system efficiency compared to a traditional system.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Larminie, J. , and Dicks, A. , 2002, Fuel Cell Systems Explained, Wiley, Chichester, UK.
Li, J. , Fang, C. , and Xu, L. , 2014, “Current Status and Trends of the Research and Development for Fuel Cell Vehicles,” J. Autom. Saf. Energy, 5(1), pp. 17–29.
Springer, T. E. , Zawodzinski, T. A. , and Gottesfeld, S. , 1991, “Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc., 138(8), pp. 2334–2342. [CrossRef]
Springer, T. E. , Wilson, M. S. , and Gottesfeld, S. , 1993, “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., 140(12), pp. 3513–3526. [CrossRef]
Wu, J. , Yuan, X. Z. , Martin, J. J. , Wang, H. , Zhang, J. , Shen, J. , Wu, S. , and Merida, W. , 2008, “A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies,” J. Power Sources, 184(1), pp. 104–119. [CrossRef]
Kim, B. J. , and Kim, M. S. , 2012, “Studies on the Cathode Humidification by Exhaust Gas Recirculation for PEM Fuel Cell,” Int. J. Hydrogen Energy, 37(5), pp. 4290–4299. [CrossRef]
Jung, S. H. , Kim, S. L. , Kim, M. S. , Park, Y. S. , and Lim, T. W. , 2007, “Experimental Study of Gas Humidification With Injectors for Automotive PEM Fuel Cell Systems,” J. Power Sources, 170(2), pp. 324–333. [CrossRef]
Kim, B. J. , Kim, S. I. , Byun, S. Y. , Kim, M. S. , Kim, H. Y. , and Kwon, H. R. , 2010, “Humidification of Air Using Water Injector and Cyclone Separator,” Trans. Korean Soc. Mech Eng. B, 34(5), pp. 491–498. [CrossRef]
Bernardi, D. M. , and Verbrugge, M. W. , 1992, “A Mathematical Model of the Solid-Electrolyte Fuel Cell,” J. Electrochem. Soc., 139(9), pp. 2477–2491. [CrossRef]
Büchi, F. N. , and Srinivasa, S. , 1997, “Operating Proton Exchange Membrane Fuel Cells Without External Humidification of the Reactant Gases,” J. Electrochem. Soc., 144(8), pp. 2767–2772. [CrossRef]
Yang, T. , Shi, P. , and Du, C. , 2006, “Study on Self-Humidified PEMFC With Reactant Circulation,” Electrochim. Acta, 51(26), pp. 5618–5625. [CrossRef]
Su, H. , Xu, L. , Zhu, H. , Wu, Y. , Yang, L. , Liao, S. , Song, H. , Liang, Z. , and Birss, V. , 2010, “Self-Humidification of a PEM Fuel Cell Using a Novel Pt/SiO2/C Anode Catalyst,” Int. J. Hydrogen Energy, 35(15), pp. 7874–7880. [CrossRef]
Legrand, P. M. , Morin, A. , Mareau, V. H. , and Gonon, L. , 2012, “Impact of Gas Stoichiometry on Water Management and Fuel Cell Performance of a Sulfonated Poly(Ether Ketone) Membrane,” J. Power Sources, 206, pp. 161–170. [CrossRef]
Riascos, L. A. M. , 2008, “Relative Humidity Control in Polymer Electrolyte Membrane Fuel Cells Without Extra Humidification,” J. Power Sources, 184(1), pp. 204–211. [CrossRef]
Li, Y. , Zhou, Q. , and Zhang, X. , 2014, “Numerical Analysis of Steady State Self-Humidification Performance of PEMFC,” CIESE J., 65(5), pp. 1893–1899.
Berning, T. , Odgaard, M. , and Kær, S. K. , 2011, “Water Balance Simulations of a Polymer-Electrolyte Membrane Fuel Cell Using a Two-Fluid Model,” J. Power Sources, 196(15), pp. 6305–6317. [CrossRef]
Berning, T. , and Kær, S. K. , 2012, “Low Stoichiometry Operation of a Proton Exchange Membrane Fuel Cell Employing the Interdigitated Flow Field—A Modeling Study,” Int. J. Hydrogen Energy, 37(10), pp. 8477–8489. [CrossRef]
Bao, C. , Ouyang, M. , and Yi, B. , 2006, “Modeling and Control of Air Stream and Hydrogen Flow With Recirculation in a PEM Fuel Cell System—I: Control-Oriented Modeling,” Int. J. Hydrogen Energy, 31(13), pp. 1879–1896. [CrossRef]
Dadvar, M. , and Afshari, E. , 2014, “Analysis of Design Parameters in Anodic Recirculation System Based on Ejector Technology for PEM Fuel Cells: A New Approach in Designing,” Int. J. Hydrogen Energy, 39(23), pp. 12061–12073. [CrossRef]
Badami, M. , and Mura, M. , 2010, “Theoretical Model With Experimental Validation of a Regenerative Blower for Hydrogen Recirculation in a PEM Fuel Cell System,” Energy Convers. Manage., 51(3), pp. 553–560. [CrossRef]
Badami, M. , and Mura, M. , 2012, “Leakage Effects on the Performance Characteristics of a Regenerative Blower for the Hydrogen Recirculation of a PEM Fuel Cell,” Energy Convers. Manage., 55, pp. 20–25. [CrossRef]
Uno, M. , Shimada, T. , and Tanaka, K. , 2011, “Reactant Recirculation System Utilizing Pressure Swing for Proton Exchange Membrane Fuel Cell,” J. Power Sources, 196(5), pp. 2558–2566. [CrossRef]
Promislow, K. , St-Pierre, J. , and Wetton, B. , 2011, “A Simple, Analytic Model of Polymer Electrolyte Membrane Fuel Cell Anode Recirculation at Operating Power Including Nitrogen Crossover,” J. Power Sources, 196(23), pp. 10050–10056. [CrossRef]
Yoshida, T. , and Kojima, K. , 2015, “Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society,” Electrochem. Soc. Interface, 24(2), pp. 45–49. [CrossRef]
Cheng, S. , Li, J. , Xu, L. , and Ouyang, M. , 2014, “Air Supply System Model With Exhaust Gas Recirculation for Improving the Life of Fuel Cell,” IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC-AP), Beijing, China, Aug. 31–Sept. 3, pp. 1–6.
Hu, J. , Xu, L. , Li, J. , Ouyang, M. , Cheng, S. , and Fang, C. , 2014, “Water Management in a Self-Humidifying PEM Fuel Cell System by Exhaust Gas Recirculation,” IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC-AP), Beijing, China, Aug. 31–Sept. 3, pp. 1–6.
Wu, H. W. , 2016, “A Review of Recent Development: Transport and Performance Modeling of PEM Fuel Cells,” Appl. Energy, 165, pp. 81–106. [CrossRef]
Carnes, B. , Spernjak, D. , Luo, G. , Hao, L. , Chen, K. S. , Wang, C. Y. , Mukundan, R. , and Borup, R. L. , 2013, “Validation of a Two-Phase Multidimensional Polymer Electrolyte Membrane Fuel Cell Computational Model Using Current Distribution Measurements,” J. Power Sources, 236, pp. 126–137. [CrossRef]
Iranzo, A. , Boillat, P. , and Rosa, F. , 2014, “Validation of a Three Dimensional PEM Fuel Cell CFD Model Using Local Liquid Water Distributions Measured With Neutron Imaging,” Int. J. Hydrogen Energy, 39(13), pp. 7089–7099. [CrossRef]
Pukrushpan, J. T. , 2003, “Modeling and Control of Fuel Cell Systems and Fuel Processors,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI. http://www-personal.umich.edu/~annastef/FuelCellPdf/pukrushpan_thesis.pdf
Soltani, M. , and Bathaee, S. M. T. , 2010, “Development of an Empirical Dynamic Model for a Nexa PEM Fuel Cell Power Module,” Energy Convers. Manage., 51(12), pp. 2492–2500. [CrossRef]
Ziogou, C. , Voutetakis, S. , Papadopoulou, S. , and Georgiadis, M. C. , 2011, “Modeling, Simulation and Experimental Validation of a PEM Fuel Cell System,” Comput. Chem. Eng., 35(9), pp. 1886–1900. [CrossRef]
Liso, V. , Araya, S. S. , Olesen, A. C. , Nielsen, M. P. , and Kær, S. K. , 2016, “Modeling and Experimental Validation of Water Mass Balance in a PEM Fuel Cell Stack,” Int. J. Hydrogen Energy, 41(4), pp. 3079–3092. [CrossRef]
Saygılı, Y. , Kıncal, S. , and Eroglu, I. , 2015, “Development and Modeling for Process Control Purposes in PEMs,” Int. J. Hydrogen Energy, 40(24), pp. 7886–7894. [CrossRef]
Schultze, M. , and Horn, J. , 2012, “Optimization Approach for Cathode Exhaust Gas Conditioning of a Multifunctional PEM Fuel Cell System for the Application in Aircraft,” Deutscher Luft- und Raumfahrtkongress, Berlin, Sept. 11, Paper No. 281322. http://www.dglr.de/publikationen/2012/281322.pdf
Schultze, M. , and Horn, J. , 2016, “Modeling, State Estimation and Nonlinear Model Predictive Control of Cathode Exhaust Gas Mass Flow for PEM Fuel Cells,” Control Eng. Pract., 49, pp. 76–86. [CrossRef]
Hillstrom, E. T. , Canova, M. , Guezennec, Y. , and Rizzoni, G. , 2013, “Modeling the Cathode Pressure Dynamics in the Buckeye Bullet II 540 kW Hydrogen PEM Fuel Cell System,” J. Power Sources, 241, pp. 33–45. [CrossRef]
McCain, B. A. , Stefanopoulou, A. G. , and Kolmanovsky, I. V. , 2008, “On the Dynamics and Control of Through-Plane Water Distributions in PEM Fuel Cells,” Chem. Eng. Sci., 63(17), pp. 4418–4432. [CrossRef]
Chen, L. , Feng, Y. L. , Song, C. X. , Chen, L. , He, Y. L. , and Tao, W. Q. , 2013, “Multi-Scale Modeling of Proton Exchange Membrane Fuel Cell by Coupling Finite Volume Method and Lattice Boltzmann Method,” Int. J. Heat Mass Transfer, 63, pp. 268–283. [CrossRef]
Franco, A. A. , Coulon, R. , de Morais, R. F. , Cheah, S. K. , Kachmar, A. , and Gabriel, M. A. , 2009, “Mutiscale Modeling Prediction of PEMFC MEA Durability Under Automotive-Operating Conditions,” Electrochem. Soc. Trans., 25(1), pp. 65–79.
Eschenbach, M. P. , Coulon, R. , Franco, A. A. , Kallo, J. , and Bessler, W. G. , 2011, “Multi-Scale Simulation of Fuel Cells: From the Cell to the System,” Solid State Ionics, 192(1), pp. 615–618. [CrossRef]
Xu, L. , Yang, F. , Li, J. , Ouyang, M. , and Hua, J. , 2012, “Real Time Optimal Energy Management Strategy Targeting at Minimizing Daily Operation Cost for a Plug-In Fuel Cell City Bus,” Int. J. Hydrogen Energy, 37(20), pp. 15380–15392. [CrossRef]
Xu, L. , Ouyang, M. , Li, J. , Yang, F. , Lu, L. , and Hua, J. , 2013, “Application of Pontryagin's Minimal Principle to the Energy Management Strategy of Plugin Fuel Cell Electric Vehicles,” Int. J. Hydrogen Energy, 38(24), pp. 10104–10115. [CrossRef]
Fang, C. , 2014, “Research on the Control System for Vehicular PEM Fuel Cell Engines,” Master's thesis, Tsinghua University, Beijing, China.
Xu, L. , Li, J. , Ouyang, M. , Hua, J. , and Yang, G. , 2014, “Multi-Mode Control Strategy for Fuel Cell Electric Vehicles Regarding Fuel Economy and Durability,” Int. J. Hydrogen Energy, 39(5), pp. 2374–2389. [CrossRef]
Xu, L. , Li, J. , and Ouyang, M. , 2015, “Energy Flow Modeling and Real-Time Control Design Basing on Mean Values for Maximizing Driving Mileage of a Fuel Cell Bus,” Int. J. Hydrogen Energy, 40(43), pp. 15052–15066. [CrossRef]
Zhang, W. , Li, J. , Xu, L. , Ouyang, M. , Liu, Y. , Han, Q. , and Li, K. , 2017, “Optimization for a Fuel Cell/Battery/Capacity Tram With Equivalent Consumption Minimization Strategy,” Energy Convers. Manage., 134, pp. 59–69. [CrossRef]
Zhang, W. , Xu, L. , Li, J. , Ouyang, M. , Liu, Y. , Han, Q. , and Li, Y. , 2017, “Comparison of Daily Operation Strategies for a Fuel Cell/Battery Tram,” Int. J. Hydrogen Energy, 42(29), pp. 18532–18539. [CrossRef]
Xu, L. , Ouyang, M. , Li, J. , Yang, F. , Lu, L. , and Hua, J. , 2013, “Optimal Sizing of Plug-In Fuel Cell Electric Vehicles Using Models of Vehicle Performance and System Cost,” Appl. Energy, 103, pp. 477–487. [CrossRef]
Zhang, W. , Li, J. , Xu, L. , Ouyang, M. , Liu, Y. , Han, Q. , and Li, K. , 2016, “Comparison Study on Life-Cycle Costs of Different Trams Powered by Fuel Cell Systems and Others,” Int. J. Hydrogen Energy, 41(38), pp. 16577–16591. [CrossRef]
Pukrushpan, J. T. , Peng, H. , and Stefanopoulou, A. G. , 2004, “Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems,” ASME J. Dyn. Syst. Meas. Control, 126(1), pp. 14–25.
Xu, L. , Fang, C. , Hu, J. , Cheng, S. , Li, J. , Ouyang, M. , and Lehnert, W. , 2017, “Parameter Extraction of Polymer Electrolyte Membrane Fuel Cell Based on Quasi-Dynamic Model and Periphery Signal,” Energy, 122, pp. 675–690. [CrossRef]
Xu, L. , Fang, C. , Hu, J. , Cheng, S. , Li, J. , Ouyang, M. , and Lehnert, W. , 2017, “Parameter Extraction and Uncertainty Analysis of a Proton Exchange Membrane Fuel Cell System Based on Monte Carlo Simulation,” Int. J. Hydrogen Energy, 42(4), pp. 2309–2326. [CrossRef]
Fang, C. , Li, J. , Xu, L. , Ouyang, M. , Hu, J. , and Cheng, S. , 2015, “Model-Based Fuel Pressure Regulation Algorithm for a Hydrogen-Injected PEM Fuel Cell Engine,” Int. J. Hydrogen Energy, 40(43), pp. 14942–14951. [CrossRef]
Cheng, S. , Fang, C. , Xu, L. , Li, J. , and Ouyang, M. , 2015, “Model-Based Temperature Regulation of a PEM Fuel Cell System on a City Bus,” Int. J. Hydrogen Energy, 40(39), pp. 13566–13575. [CrossRef]
Xu, L. , Hu, J. , Cheng, S. , Fang, C. , Li, J. , Ouyang, M. , and Lehnert, W. , 2017, “Robust Control of Internal States in a Polymer Electrolyte Membrane Fuel Cell Air-Feed System by Considering Actuator Properties,” Int. J. Hydrogen Energy, 42(18), pp. 13171–13191. [CrossRef]
Zhao, X. , Xu, L. , Li, J. , Fang, C. , and Ouyang, M. , 2017, “Faults Diagnosis for PEM Fuel Cell System Based on Multi-Sensor Signals and Principle Component Analysis Method,” Int. J. Hydrogen Energy, 42(29), pp. 18524–18531. [CrossRef]
Fang, C. , Xu, L. , Cheng, S. , Li, J. , Jiang, H. , and Ouyang, M. , 2017, “Sliding-Mode-Based Temperature Regulation of a Proton Exchange Membrane Fuel Cell Test Bench,” Int. J. Hydrogen Energy, 42(16), pp. 11745–11757. [CrossRef]
Cheng, S. , Xu, L. , Wu, K. , Fang, C. , Hu, J. , Li, J. , and Ouyang, M. , 2017, “Optimal Warm-Up Control Strategy of the PEMFC System on a City Bus Aimed at Improving Efficiency,” Int. J. Hydrogen Energy, 42(16), pp. 11632–11643. [CrossRef]
Hu, J. , Xu, L. , Li, J. , Fang, C. , Cheng, S. , Ouyang, M. , and Hong, P. , 2015, “Model-Based Estimation of Liquid Saturation in Cathode Gas Diffusion Layer and Current Density Difference Under Proton Exchange Membrane Fuel Cell Flooding,” Int. J. Hydrogen Energy, 40(41), pp. 14187–14201. [CrossRef]
Hu, J. , Li, J. , Xu, L. , and Ouyang, M. , 2016, “Analytical Calculation and Evaluation of Water Transport Through a Proton Exchange Membrane Fuel Cell Based on a One-Dimensional Model,” Energy, 111, pp. 869–883. [CrossRef]
Xu, L. , Hu, J. , Cheng, S. , Fang, C. , Li, J. , Ouyang, M. , and Lehnert, W. , 2017, “Nonlinear Observation of Internal States of Fuel Cell Cathode Utilizing a High-Order Sliding-Mode Algorithm,” J. Power Sources, 356, pp. 56–71. [CrossRef]
Hong, P. , Li, J. , Xu, L. , Ouyang, M. , and Fang, C. , 2016, “Modeling and Simulation of Parallel DC/DC Converters for Online AC Impedance Estimation of PEM Fuel Cell Stack,” Int. J. Hydrogen Energy, 41(4), pp. 3004–3014. [CrossRef]
Hong, P. , Xu, L. , Li, J. , and Ouyang, M. , 2017, “Modeling and Analysis of Internal Water Transfer Behavior of PEM Fuel Cell of Large Surface Area,” Int. J. Hydrogen Energy, 42(29), pp. 18540–18550. [CrossRef]
Cheng, S. , Xu, L. , Li, J. , and Ouyang, M. , 2016, “Development of a PEM Fuel Cell City Bus With a Hierarchical Control System,” Energies, 9(6), p. 417. [CrossRef]
Li, J. , Hu, Z. , Xu, L. , Ouyang, M. , Fang, C. , Hu, J. , Cheng, S. , Hong, P. , Zhang, W. , and Jiang, H. , 2016, “Fuel Cell System Degradation Analysis of a Chinese Plug-In Hybrid Fuel Cell City Bus,” Int. J. Hydrogen Energy, 41(34), pp. 15295–15310. [CrossRef]
Jiang, H. , Xu, L. , Fang, C. , Zhao, X. , Hu, Z. , Li, J. , and Ouyang, M. , 2017, “Experimental Study on Dual Recirculation of Polymer Electrolyte Membrane Fuel Cell,” Int. J. Hydrogen Energy, 42(29), pp. 18551–18559. [CrossRef]
Natarajan, D. , and Nguyen, T. V. , 2001, “A Two-Dimensional Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors,” J. Electrochem. Soc., 148(12), pp. A1324–A1335. [CrossRef]
Hoffman, J. D. , and Zucrow, M. J. , 1976, Gas Dynamics, Wiley, New York.
del Real, A. J. , Arce, A. , and Bordons, C. , 2007, “Development and Experimental Validation of a PEM Fuel Cell Dynamic Model,” J. Power Sources, 173(1), pp. 310–324. [CrossRef]
Anantaraman, A. V. , and Gargner, C. L. , 1996, “Studies on Ion-Exchange Membranes: Effect of Humidity on the Conductivity of Nafion,” J. Electroanal. Chem., 414(2), pp. 115–120.

Figures

Grahic Jump Location
Fig. 1

A PEMFC system with CEGR and without an external humidifier

Grahic Jump Location
Fig. 2

Structure of the dynamic model in matlab/simulink

Grahic Jump Location
Fig. 3

Dynamic responses of a PEMFC with a CEGR and without an external humidifier, xegr = 50% at the 15th second, δqu = 2.5, Tcell = 65 °C, current density from 0.1 to 1.2 A cm−2 (0.1, 0.3, 0.6, 1.0, and 1.2). (a) Mass flow rates at the cathode side, air stoichiometry, and EGR ratio; (b) hydrogen flow rate on the anode side, purging signal, and hydrogen stoichiometry; (c) pressures and water activity on the cathode side, (d) pressures and water activity on the anode side; (e) water vapor and liquid water masses on both sides; (f) water content, net water transport coefficient, and average cell resistance; and (g) cell voltages.

Grahic Jump Location
Fig. 4

Influences of parameters on air stoichiometry

Grahic Jump Location
Fig. 5

Influences of parameters on oxygen molar concentration

Grahic Jump Location
Fig. 6

Influences of parameters on water contents of both sides

Grahic Jump Location
Fig. 7

Influences of parameters on liquid water mass on the cathode side

Grahic Jump Location
Fig. 8

Comparison between system A (a PEMFC system with CEGR and without an external humidifier) and system B (a PEMFC system with an external membrane humidifier and without CEGR): (a) polarization and power curves and (b) system efficiencies

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In