0
Research Papers

Graphite Supported Silica Immobilized Phosphotungstic Acid Based Ion-Conducting Inorganic Membrane

[+] Author and Article Information
Jay Pandey

Department of Chemical Engineering,
Indian Institute of Technology Delhi,
Hauz Khas 110016, New Delhi, India
e-mail: jay.pandey.iitd@gmail.com

Murali M. Seepana

Department of Chemical Engineering,
National Institute of Technology,
Warangal 506004, Telangana, India

1Corresponding author.

Manuscript received January 23, 2018; final manuscript received April 26, 2018; published online June 11, 2018. Assoc. Editor: William Mustain.

J. Electrochem. En. Conv. Stor. 16(1), 011004 (Jun 11, 2018) (8 pages) Paper No: JEECS-18-1009; doi: 10.1115/1.4040203 History: Received January 23, 2018; Revised April 26, 2018

An asymmetric, inorganic ion-conducting membrane was synthesized by depositing a top layer containing silica-immobilized phosphotungstic acid (Si-PWA) over a graphite sheet. Surface morphology, thermal stability, and structure of the top layer of the membrane were studied using scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR), respectively. The transport number and specific conductivity of the membrane were measured using membrane potential and impedance measurements, respectively. The composition of the top layer was varied by changing the molar ratio of PWA and tetraethoxy orthosilicate (TEOS) in the casting sol. The transport number and specific conductivity of the membrane increased on increasing PWA fraction in the casting solution. The highest transport number for sodium ion was 0.98 for PWA: TEOS molar ratio of 1.5. Specific conductivity of the membrane, with 0.5 PWA: TEOS, was 0.0082 S cm−1 which was lower compared to the membrane with 1.5 PWA: TEOS of specific conductivity 0.017 S cm−1. The specific conductivity of the membrane increased with increase in the temperature for both 0.5 and 1.5 molar ratio of PWA: TEOS with the calculated activation energy 18.9 and 8.8 kJ/mol, respectively.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Energy, U. S. D. , 2000, Fuel Cell Handbook, 5th ed., Science Applications International Corporation/E&G Services Parson, McLean, VA.
Kamarudin, S. K. , Ahmad, F. , and Daud, W. R. W. , 2009, “ Overview on Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices,” Int. J. Hydrogen Energy, 34(16), pp. 6902–6916. [CrossRef]
Xianguo, L. , 2006, Principles of Fuel Cells, 3rd ed., Taylor & Francis, New York.
Ahmad, H. , Kamarudin, S. K. , Harsan, U. A. , and Daud, W. R. W. , 2010, “ Overview of Hybrid Membranes for Direct Methanol Fuel Cell Applications,” Int. J. Hydrogen Energy, 35(5), pp. 2160–2175. [CrossRef]
Coutanceau, C. , Koffi, R. K. , Leger, J. M. , Marestin, K. , Mercier, R. , Nayoze, C. , and Capron, P. , 2006, “ Development of Materials for Mini DMFC Working at Room Temperature for Portable Applications,” J. Power Sources, 160(1), pp. 334–339. [CrossRef]
Zhang, N. , Zhang, G. , Xu, D. , Zhao, C. , Ma, W. , Li, H. , Zhang, Y. , Xu, S. , Jiang, H. , Sun, H. , and Na, H. , 2011, “ Cross-Linked Membranes Based on Sulfonated Poly (Ether Ether Ketone) (SPEEK)/Nafion for Direct Methanol Fuel Cells (DMFCs),” Int. J. Hydrogen Energy, 36(17), pp. 11025–11033. [CrossRef]
Chen, S. , Bocarsly, A. B. , and Benziger, J. , 2005, “ Nafion-Layered Sulfonated Polysulfone Fuel Cell Membranes,” J. Power Sources, 152(1), pp. 27–33. [CrossRef]
Woo, Y. , Oh, S. Y. , Kang, Y. S. , and Jung, B. , 2003, “ Synthesis and Characterization of Sulfonated Polyimide Membranes for Direct Methanol Fuel Cell,” J. Membr. Sci., 220(1–2), pp. 31–45. [CrossRef]
Wycisk, R. , Chisholm, J. , Lee, J. , Lin, J. , and Pintauro, P. N. , 2006, “ Direct Methanol Fuel Cell Membranes From Nafion–Polybenzimidazole Blends,” J. Power Sources, 163(1), pp. 9–17. [CrossRef]
Ren, S. , Sun, G. , Li, C. , Song, S. , Xin, Q. , and Yang, X. , 2006, “ Sulfonated Zirconia–Nafion Composite Membranes for Higher Temperature Direct Methanol Fuel Cells,” J. Power Sources, 157(2), pp. 724–726. [CrossRef]
Alberti, G. , Casciola, M. , Capitani, D. , Donnadio, A. , Narducci, R. , Pica, M. , and Sganappa, M. , 2007, “ Novel Nafion–Zirconium Phosphate Nanocomposite Membranes With Enhanced Stability of Proton Conductivity at Medium Temperature and High Relative Humidity,” Electrochim. Acta, 52(28), pp. 8125–8132. [CrossRef]
Tominaga, Y. , Hong, I. , Asai, S. , and Sumita, M. , 2007, “ Proton Conduction in Nafion Composite Membranes Filled With Mesoporous Silica,” J. Power Sources, 171(2), pp. 530–534. [CrossRef]
Jung, D. H. , Cho, S. Y. , Peck, D. H. , Shin, D. R. , and Kim, J. S. , 2002, “ Performance Evaluation of a Nafion/Silicon Oxide Hybrid Membrane for Direct Methanol Fuel Cell,” J. Power Sources, 106(1–2), pp. 173–177. [CrossRef]
Dimitrova, P. , Friedrich, K. A. , Stimming, U. , and Vogt, B. , 2002, “ Modified Nafion®-Based Membranes for Use in Direct Methanol Fuel Cells,” Solid State Ionics, 150(1–2), pp. 115–122. [CrossRef]
Pu, H. , and Liu, Q. , 2004, “ Methanol Permeability and Proton Conductivity of Polybenzimidazole and Sulfonated Polybenzimidazole,” Polym. Int., 53(10), pp. 1512–1516. [CrossRef]
Ramani, V. , Kunz, H. R. , and Fenton, J. M. , 2005, “ Stabilized Heteropolyacid/Nafion® Composite Membranes for Elevated Temperature/Low Relative Humidity PEFC Operation,” Electrochim. Acta, 50(5), pp. 1181–1187. [CrossRef]
Thakkar, R. , and Chudasama, U. , 2009, “ Synthesis, Characterization and Proton Transport Property of Crystalline zirconium Titanium Phosphate, a Tetravalent Bimetallic Acid Salts,” J. Sci. Ind. Res., 68(4), pp. 312–318. http://nopr.niscair.res.in/handle/123456789/3494
Vaivars, G. , Maxakato, S. N. W. , Mokrani, T. , Petrik, L. , Klavins, J. , Gericke, G. , and Linkov, V. , 2004, “ Zirconium Phosphate Based Inorganic Direct Methanol Fuel Cell,” Mater. Sci., 10(2), pp. 1392–1320. https://www.researchgate.net/publication/242193281_Zirconium_Phosphate_Based_Inorganic_Direct_Methanol_Fuel_Cell
Izumi, Y. , Hisano, K. , and Hida, T. , 1999, “ Acid Catalysis of Silica-Included Heteropolyacid in Polar Reaction Media,” Appl. Catal., A, 181(2), pp. 277–282.
Lu, J. , Tang, H. , Lu, S. , Wu, H. , and Jiang, S. P. , 2011, “ A Novel Inorganic Proton Exchange Membrane Based on Self-Assembled HPW-Mesosilica for Direct Methanol Fuel Cell,” J. Mater. Chem., 21(18), pp. 6668–6676. [CrossRef]
Tang, H. , Pan, M. , and Jiang, S. P. , 2011, “ Self Assembled 12-Tungstophosphoric Acid–Silica Mesoporous Nanocomposites as Proton Exchange Membranes for Direct Alcohol Fuel Cells,” Dalton Trans., 40(19), pp. 5220–5227. [CrossRef] [PubMed]
Lu, S. F. , Wang, D. L. , Jiang, S. P. , Xiang, Y. , Lu, J. L. , and Zeng, J. , 2010, “ HPW/MCM-41 Phosphotungstic Acid/Mesoporous Silica Composites as Novel Proton-Exchange Membranes for Elevated-Temperature Fuel Cells,” Adv. Mater, 22(9), pp. 971–976. [CrossRef] [PubMed]
Xu, T. , and Hu, K. , 2004, “ A Simple Determination of Counter-Ionic Permselectivity in an Ion Exchange Membrane Using of Bi-Ionic Membrane Potential: Permselectivity of Anionic Species in a Novel Anion Exchange Membrane,” Sep. Purif. Technol., 40(3), pp. 231–236. [CrossRef]
Zuo, X. , Yu, S. , Xu, X. , Bao, R. , Xu, J. , and Qu, W. , 2009, “ Preparation of Organic-Inorganic Hybrid Cation-Exchange Membranes Via Blending Method and Their Electrochemical Characterization,” J. Membr. Sci., 328(1–2), pp. 23–30. [CrossRef]
Ettre, L. S. , 1993, “ Nomenclature for Chromatography (IUPAC Recommendations 1993),” Pure Appl. Chem., 65(4), pp. 819–872. [CrossRef]
Hasani-Sadrabadi, M. M. , Dashtimoghadam, E. , Majedi, F. S. , and Kabiri, K. , 2009, “ Nafion®/Bio-Functionalized Montmorillonite Nanohybrids as Novel Polyelectrolyte Membranes for Direct Methanol Fuel Cells,” J. Power Sources, 190(2), pp. 318–321. [CrossRef]
Mahreni, A. , Mohamad, A. B. , Kadhum, A. A. H. , Daud, W. R. W. , and Iyuke, S. E. , 2009, “ Nafion/Silicon Oxide/Phosphotungstic Acid Nanocomposite Membrane With Enhanced Proton Conductivity,” J. Membr. Sci., 327(1–2), pp. 32–40. [CrossRef]
Dogan, H. , Inan, T. Y. , Unveren, E. , and Kaya, M. , 2010, “ Effect of Cesium Salt of Tungstophosphoric Acid (Cs-TPA) on the Properties of Sulfonated Polyether Ether Ketone (SPEEK) Composite Membranes for Fuel Cell Applications,” Int. J. Hydrogen Energy, 35(15), pp. 7784–7795. [CrossRef]
Amirinejad, M. , Madaenia, S. S. , Navarrab, M. A. , Rafieec, E. , and Scrosati, B. , 2011, “ Preparation and Characterization of Phosphotungstic Acid-Derived Salt/Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells,” J. Power Sources, 196(3), pp. 988–998. [CrossRef]
Choi, P. , Jalani, N. H. , Thampan, T. M. , and Dutta, R. , 2006, “ Consideration of Thermodynamic, Transport, and Mechanical Properties in the Design of Polymer Electrolyte Membranes for Higher Temperature Fuel Cell Operation,” J. Polym. Sci. Part B, 44(16), pp. 2180–2200. [CrossRef]
Tang, H. , Pan, M. , and Jiang, S. P. , 2010, “ One-Step Synthesized HPW/Meso-Silica Inorganic Proton Exchange Membranes for Fuel Cells,” Chem. Commun., 46(24), pp. 4351–4353. [CrossRef]
Shang, F. , Li, L. , Zhang, Y. , and Li, H. , 2009, “ PWA/Silica/PFSA Composite Membrane for Direct Methanol Fuel Cells,” J. Mater. Sci., 44(16), pp. 4383–4388. [CrossRef]
Mioc, U. B. , Milonjic, S. K. , Malovic, D. , Stamenkovic, V. , Colomband, P. , Mitrovic, M. M. , and Dimitrijevic, R. , 1997, “ Structure and Proton Conductivity of 12-Tungstophosphoric Acid Doped Silica,” Solid State Ionics, 97(1–4), pp. 239–246. [CrossRef]
Li, L. , Xu, L. , and Wang, Y. , 2003, “ Novel Proton Conducting Composite Membranes for Direct Methanol Fuel Cell,” Mater. Lett., 57(8), pp. 1406–1410. [CrossRef]
Staiti, P. , Minutoli, M. , and Hocevar, S. , 2000, “ Membranes Based on Phosphotungstic Acid and Polybenzimidazole for Fuel Cell Application,” J. Power Sources, 90(2), pp. 231–235. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Flowchart for the synthesis of silica immobilized PWA membrane

Grahic Jump Location
Fig. 2

A schematic picture of the diffusion cell for the measurement of membrane potential across the synthesized membrane

Grahic Jump Location
Fig. 3

(a) X-ray diffraction patterns for pure PWA, the powdered top layer of the membrane (1.5 and 0.5 PWA: TEOS), TEOS derived silica and (b) FT-IR spectra for the pure PWA, the powdered top layer of the membrane (1.5 PWA: TEOS) and silica

Grahic Jump Location
Fig. 4

Scanning electron microscopy images for (a) graphite support, (b) top layer of the membrane (1.5 PWA: TEOS) at higher magnification, (c) lower magnification, and (d) EDX spectrum of the synthesized top layer of the membrane (1.5 PWA: TEOS)

Grahic Jump Location
Fig. 5

Thermal gravimetric analysis-DSC curve for the powdered top layer of the membrane (1.5 PWA: TEOS)

Grahic Jump Location
Fig. 6

(a) Variation of water uptake and (b) membrane potential and transport number of the membrane with the different molar ratio of PWA: TEOS

Grahic Jump Location
Fig. 7

(a) Variation of specific conductivity of the membrane with different molar ratio of PWA: TEOS measured at 30 °C and 100% RH (b) variation of specific conductivity of the membrane with temperature for 0.5 and 1.5 molar ratio of PWA: TEOS and (c) Arrhenius plot showing activation energy for cation-conduction through membrane

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In