0
Research Papers

Effects of Particle Size Distribution on Compacted Density of Lithium Iron Phosphate 18650 Battery

[+] Author and Article Information
Lei Chen

School of Materials and Chemical Engineering,
Henan University of Engineering,
Zhengzhou 450006, Henan, China
e-mail: chenlei904@126.com

Zhenyu Chen

School of Materials and Chemical Engineering,
Henan University of Engineering,
Zhengzhou 450006, Henan, China

Shuaishuai Liu

Center of Analysis and Testing,
Henan University of Engineering,
Zhengzhou 451191, Henan, China

Biaofeng Gao

School of Resource and Environment,
Henan University of Engineering,
Zhengzhou 451191, Henan, China

Junwei Wang

College of Chemistry and Chemical Engineering,
Anqing Normal University,
Anqing 246011, Anhui, China
e-mail: wangjunweilotus@163.com

1Corresponding authors.

Manuscript received March 13, 2018; final manuscript received July 2, 2018; published online August 20, 2018. Assoc. Editor: Partha P. Mukherjee.

J. Electrochem. En. Conv. Stor. 15(4), 041011 (Aug 20, 2018) (5 pages) Paper No: JEECS-18-1025; doi: 10.1115/1.4040825 History: Received March 13, 2018; Revised July 02, 2018

The effects of particle size distribution on compacted density of as-prepared spherical lithium iron phosphate (LFP) LFP-1 and LFP-2 materials electrode for high-performance 18650 Li-ion batteries are investigated systemically, while the selection of two commercial materials LFP-3 and LFP-4 as a comparison. The morphology study and physical characterization results show that the LFP materials are composed of numerous particles with an average size of 300–500 nm, and have well-developed interconnected pore structure and a specific surface area of 13–15 m2/g. For CR2032 coin-type cell, the specific discharge capacities of the LFP-1 and LFP-2 are about 165 mAh/g at 0.2 C. For 18650 batteries, results indicate that the LFP-3 material has the highest compacted density of 2.52 g/cm3 at a concentrated particle size distribution such as D10 = 0.56 μm, D50 = 1.46 μm, and D90 = 6.53 μm. By mixing two different particle sizes of LFP-1 and LFP-2, the compaction density can be increased significantly from 1.90 g/cm3 to 2.25 g/cm3.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yoo, E. J. , Kim, J. , Hosono, E. , Zhou, H. , Kudo, T. , and Honma, I. , 2008, “Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries,” Nano Lett., 8(8), p. 2277. [CrossRef] [PubMed]
Zhang, W. J. , 2011, “Structure and Performance of LiFePO4 Cathode Materials: A Review,” J. Power Sources, 196(6), pp. 2962–2970. [CrossRef]
Du, J. , Jiao, L. , Wu, Q. , Liu, Y. , Qi, Z. , Guo, L. , Wang, Y. , and Yuan, H. , 2013, “Mesoporous LiFePO4 Microspheres for Rechargeable Lithium-Ion Batteries,” Electrochim. Acta, 98, pp. 288–293. [CrossRef]
Oh, S. W. , Bang, H. J. , Myung, S. T. , Bae, Y. C. , Lee, S. M. , and Sun, Y. K. , 2008, “The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density C – LiFePO4 Prepared Via Coprecipitation,” J. Electrochem. Soc., 155(6), pp. A414–A420. [CrossRef]
Oh, S. W. , Myung, S. T. , Oh, S. M. , Chong, S. Y. , Amine, K. , and Sun, Y. K. , 2010, “Polyvinylpyrrolidone-Assisted Synthesis of Microscale C-LiFePO4 With High Tap Density as Positive Electrode Materials for Lithium Batteries,” Electrochim. Acta, 55(3), pp. 1193–1199. [CrossRef]
Fey, G. T. K. , Lin, Y. C. , and Kao, H. M. , 2012, “Characterization and Electrochemical Properties of High Tap-Density LiFePO4/C Cathode Materials by a Combination of Carbothermal Reduction and Molten Salt Methods,” Electrochim. Acta, 80(10), pp. 41–49. [CrossRef]
Delacourt, C. , Poizot, P. , Levasseur, S. , and Masquelier, C. , 2006, “Size Effects on Carbon-Free LiFePO4 Powders the Key to Superior Energy Density,” Electrochem. Solid-State Lett., 9(7), pp. A352–A355. [CrossRef]
Padhi, A. K. , Goodenough, J. B. , and Nanjundaswamy, K. S. , 1997, “Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” J. Electrochem. Soc., 144(4), pp. 1188–1194. [CrossRef]
Eftekhari, A. , 2017, “LiFePO4/C Nanocomposites for Lithium-Ion Batteries,” J. Power Sources, 343, pp. 395–411. [CrossRef]
Wang, G. X. , Yang, L. , Bewlay, S. L. , Chen, Y. , Liu, H. K. , and Ahn, J. H. , 2005, “Electrochemical Properties of Carbon Coated LiFePO4 Cathode Materials,” J. Power Sources, 146(1–2), pp. 521–524. [CrossRef]
Liu, Q. B. , Liao, S. J. , Song, H. Y. , and Liang, Z. X. , 2012, “High-Performance LiFePO4/C Materials: Effect of Carbon Source on Microstructure and Performance,” J. Power Sources, 211(211), pp. 52–58. [CrossRef]
Wu, X. L. , Jiang, L. Y. , Cao, F. F. , Guo, Y. G. , and Wan, L. J. , 2009, “LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy–Storage Devices,” Adv. Mater., 21(25–26), pp. 2710–2714. [CrossRef]
Liu, Y. , Liu, D. , Zhang, Q. , Yu, D. , Liu, J. , and Cao, G. , 2011, “Lithium Iron Phosphate/Carbon Nanocomposite Film Cathodes for High Energy Lithium Ion Batteries,” Electrochim. Acta, 56(5), pp. 2559–2565. [CrossRef]
Qiu, B. , Zhang, Q. , Hu, H. , Wang, J. , Liu, J. , Xia, Y. , Zeng, Y. , Wang, X. , and Liu, Z. , 2014, “Electrochemical Investigation of Li-Excess Layered Oxide Cathode Materials/Mesocarbon Microbead in 18650 Batteries,” Electrochim. Acta, 123(10), pp. 317–324. [CrossRef]
Ping, W. , Geng, Z. , Li, Z. , Sheng, W. , Zhang, Y. , Gu, J. , Zheng, X. , and Cao, F. , 2016, “Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources,” ACS Appl. Mater. Interfaces, 8(40), pp. 26908–26915. [CrossRef]
Sofyan, N. , Setiadanu, G. T. , Zulfia, A. , and Kartini, E. , 2017, “Effect of Different Calcination Temperatures and Carbon Coating on the Characteristics of LiFePO4 Prepared by Hydrothermal Route,” Int. J. Eng. Technol., 9(4), pp. 3310–3317. [CrossRef]
Chang, Z.-R. , Lv, H. J. , Tang, H. W. , Li, H.-J. , Yuan, X. Z. , and Wang, H. , 2009, “Synthesis and Characterization of High-Density LiFePO4/C Composites as Cathode Materials for Lithium-Ion Batteries,” Electrochim. Acta, 54(20), pp. 4595–4599. [CrossRef]
Li, Y. , Meyer, S. , Lim, J. , Lee, S. C. , Gent, W. E. , Marchesini, S. , Krishnan, H. , Tyliszczak, T. , Shapiro, D. , and Kilcoyne, A. L. , 2015, “Effects of Particle Size, Electronic Connectivity, and Incoherent Nanoscale Domains on the Sequence of Lithiation in LiFePO4 Porous Electrodes,” Adv. Mater., 27(42), p. 6591. [CrossRef] [PubMed]
Ferrari, S. , Lavall, R. L. , Capsoni, D. , Quartarone, E. , Magistris, A. , Mustarelli, P. , and Canton, P. , 2010, “Influence of Particle Size and Crystal Orientation on the Electrochemical Behavior of Carbon-Coated LiFePO4,” J. Phys. Chem. C, 114(29), pp. 12598–12603. [CrossRef]
Kang, B. , and Ceder, G. , 2009, “Battery Materials for Ultrafast Charging and Discharging,” Nature, 458(7235), pp. 190–193. [CrossRef] [PubMed]
Fey, T. K. , Chen, Y. G. , and Kao, H. M. , 2009, “Electrochemical Properties of LiFePO4 Prepared Via Ball-Milling,” J. Power Sources, 189(1), pp. 169–178. [CrossRef]
Hu, Y. , Doeff, M. M. , Kostecki, R. , and FiñOnes, R. , 2004, “Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries,” J. Electrochem. Soc., 151(8), pp. A1279–A1285. [CrossRef]
Yu, S. , Chung, Y. , Min, S. S. , Jin, H. N. , and Cho, W. I. , 2012, “Investigation of Design Parameter Effects on High Current Performance of Lithium-Ion Cells With LiFePO4/Graphite Electrodes,” J. Appl. Electrochem., 42(6), pp. 443–453. [CrossRef]
Yu, S. , Kim, S. , Kim, T. Y. , Jin, H. N. , and Cho, W. I. , 2013, “Transportation Properties in Nanosized LiFePO4 Positive Electrodes and Their Effects on the Cell Performance,” J. Appl. Electrochem., 43(3), pp. 253–262. [CrossRef]
Guan, X. M. , Li, G. J. , Li, C. Y. , and Ren, R. M. , 2017, “Synthesis of Porous Nano/Micro Structured LiFePO4/C Cathode Materials for Lithium-Ion Batteries by Spray-Drying Method,” Trans. Nonferrous Met. Soc. China, 27(1), pp. 141–147. [CrossRef]
Palomares, V. , Goñi, A. , Muro, I. G. D. , Meatza, I. D. , Bengoechea, M. , Cantero, I. , and Rojo, T. , 2010, “Conductive Additive Content Balance in Li-Ion Battery Cathodes: Commercial Carbon Blacks Vs. In Situ Carbon From LiFePO4/C Composites,” J. Power Sources, 195(22), pp. 7661–7668. [CrossRef]
Zhang, X. M. , Liao, X. Z. , Wang, L. , and Ma, Z. F. , 2007, “Effect of Electrode Preparation Technology and Electrolytes on the Performance of LiFePO4 Cathode Material for Lithium Ion Battery,” J. Chem. Eng. Chin. Univ., 21(1), pp. 54–58.
Munakata, H. , Takemura, B. , Saito, T. , and Kanamura, K. , 2012, “Evaluation of Real Performance of LiFePO4 by Using Single Particle Technique,” J. Power Sources, 217(217), pp. 444–448. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

Particle size distribution curves of LiFePO4 materials

Grahic Jump Location
Fig. 2

Scanning electron microscopy images of LiFePO4 materials: (a) LFP-1, (b) LFP-2, (c) LFP-3, and (d) LFP-4

Grahic Jump Location
Fig. 1

X-ray diffraction (XRD) patterns of LiFePO4 materials

Grahic Jump Location
Fig. 4

Charge-discharge voltage profiles of LFP-1 for CR2032 coin-type cell at different rates

Grahic Jump Location
Fig. 5

Cycling properties of LiFePO4 materials at 1 C for CR2032 coin-type cell

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In