Research Papers

Investigation of Subsystems for Combination into a SOFC-Based CCHP System

[+] Author and Article Information
Christof Weinlaender

Institute of Thermal Engineering,
Graz University of Technology,
Inffeldgasse 25/B,
Graz A-8010, Austria
e-mail: christof.weinlaender@tugraz.at

Johannes Albert

Institute of Thermal Engineering,
Graz University of Technology,
Inffeldgasse 25/B,
Graz A-8010, Austria
e-mail: johannes.albert@tugraz.at

Christian Gaber

Institute of Thermal Engineering,
Graz University of Technology,
Inffeldgasse 25/B,
Graz A-8010, Austria
e-mail: christian.gaber@tugraz.at

Martin Hauth

Hans-List-Platz 1,
Graz A-8020, Austria
e-mail: martin.hauth@avl.com

René Rieberer

Institute of Thermal Engineering,
Graz University of Technology,
Inffeldgasse 25/B,
Graz A-8010, Austria
e-mail: rene.rieberer@tugraz.at

Christoph Hochenauer

Institute of Thermal Engineering,
Graz University of Technology,
Inffeldgasse 25/B,
Graz A-8010, Austria
e-mail: christoph.hochenauer@tugraz.at

Manuscript received February 7, 2018; final manuscript received September 30, 2018; published online November 19, 2018. Assoc. Editor: Robert J. Braun.

J. Electrochem. En. Conv. Stor. 16(2), 021003 (Nov 19, 2018) (12 pages) Paper No: JEECS-18-1015; doi: 10.1115/1.4041727 History: Received February 07, 2018; Revised September 30, 2018

This paper presents the development of the subsystems for stationary biogas powered solid oxide fuel cell (SOFC)-based combined cooling, heat and power (CCHP). For certain applications, such as buildings, a heat-driven operation mode leads to low operating hours per year for conventional combined heat and power (CHP) systems due to the low heat demand during the summer season. The objectives of this study are the evaluation of an adsorber, a steam reformer, a SOFC, and an absorption chiller (AC). Biogas, however, contains impurities in the form of hydrogen sulfide (H2S), hydrogen chloride (HCl), and siloxanes in different concentrations, which have a negative effect on the performance and durability of the SOFC and, in the case of H2S, also on the catalyst of the steam reformer. This paper describes different experimental sections: (i) the biogas treatment with its main focus on H2S separation and steam reforming, (ii) the setup and start-up of a 10 cell SOFC stack, and (iii) test runs with an AC using a mixture of NH3 (ammonia)/H2O (water). The components required for the engineering process of the subsystem's structure are described in detail and possible options for system design are explained. The evaluation is the basis to reveal the improvement potentials, which have to be considered in future product developments. This paper aims at comparing experimental data of the test rigs to develop an understanding of the requirements for a stable and continuous operation of a SOFC-based CCHP operated by biogas.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Wu, D. W. , and Wang, R. Z. , 2006, “ Combined Cooling, Heating and Power: A Review,” Prog. Energy Combust. Sci., 32(5–6), pp. 459–495. [CrossRef]
Van herle, J. , Membrez, Y. , and Bucheli, O. , 2004, “ Biogas as a Fuel Source for SOFC Co-Generators,” J. Power Sources., 127(1–2), pp. 300–312. [CrossRef]
Trendewicz, A. A. , and Braun, R. J. , 2013, “ Techno-Economic Analysis of Solid Oxide Fuel Cell-Based Combined Heat and Power Systems for Biogas Utilization at Wastewater Treatment Facilities,” J. Power Sources., 233, pp. 380–393. [CrossRef]
Lanzini, A. , Madi, H. , Chiodo, V. , Papurello, D. , Maisano, S. , Santarelli, M. , and Van herle, J. , 2017, “ Dealing With Fuel Contaminants in Biogas-Fed Solid Oxide Fuel Cell (SOFC) and Molten Carbonate Fuel Cell (MCFC) Plants: Degradation of Catalytic and Electro-Catalytic Active Surfaces and Related Gas Purification Methods,” Prog. Energy Combust. Sci., 61, pp. 150–188. [CrossRef]
Giglio, E. , Lanzini, A. , Santarelli, M. , and Leone, P. , 2015, “ Synthetic Natural Gas Via Integrated High-Temperature Electrolysis and Methanation—Part I: Energy Performance,” J. Energy Storage., 1, pp. 22–37. [CrossRef]
Giglio, E. , Lanzini, A. , Santarelli, M. , and Leone, P. , 2015, “ Synthetic Natural Gas Via Integrated High-Temperature Electrolysis and Methanation—Part II: Economic Analysis,” J. Energy Storage., 2, pp. 64–79. [CrossRef]
Madi, H. , Lanzini, A. , Papurello, D. , Diethelm, S. , Ludwig, C. , Santarelli, M. , and Van herle, J. , 2016, “ Solid Oxide Fuel Cell Anode Degradation by the Effect of Hydrogen Chloride in Stack and Single Cell Environments,” J. Power Sources., 326, pp. 349–356. [CrossRef]
Rechberger, J. , Reissig, M. , and Hauth, M. , 2013, “ AVL SOFC Systems on the Way of Industrialization,” ECS Trans., 57(1), pp. 141–148. [CrossRef]
Powell, M. , Meinhardt, K. , Sprenkle, V. , Chick, L. , and McVay, G. , 2012, “ Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation,” J. Power Sources., 205, pp. 377–384. [CrossRef]
Riegraf, M. , Schiller, G. , Costa, R. , Friedrich, K. A. , Latz, A. , and Yurkiv, V. , 2014, “ Elementary Kinetic Numerical Simulation of Ni/YSZ SOFC Anode Performance Considering Sulfur Poisoning,” J. Electrochem. Soc., 162(1), pp. F65–F75. [CrossRef]
Sasaki, K. , Haga, K. , Yoshizumi, T. , Minematsu, D. , Yuki, E. , Liu, R. , Uryu, C. , Oshima, T. , Ogura, T. , Shiratori, Y. , Ito, K. , Koyama, M. , and Yokomoto, K. , 2011, “ Chemical Durability of Solid Oxide Fuel Cells: Influence of Impurities on Long-Term Performance,” J. Power Sources., 196(22), pp. 9130–9140. [CrossRef]
Goodenough, J. B. , and Huang, Y.-H. , 2007, “ Alternative Anode Materials for Solid Oxide Fuel Cells,” J. Power Sources., 173(1), pp. 1–10. [CrossRef]
Subotic, V. , Schluckner, C. , Schroettner, H. , and Hochenauer, C. , 2016, “ Analysis of Possibilities for Carbon Removal From Porous Anode of Solid Oxide Fuel Cells After Different Failure Modes,” J. Power Sources., 302, pp. 378–386. [CrossRef]
Lee, W. Y. , Hanna, J. , and Ghoniem, A. F. , 2012, “ On the Predictions of Carbon Deposition on the Nickel Anode of a SOFC and Its Impact on Open-Circuit Conditions,” J. Electrochem. Soc., 160(2), pp. F94–F105. [CrossRef]
Kaparaju, P. , and Rintala, J. , 2013, “ Generation of Heat and Power From Biogas for Stationary Applications: Boilers, Gas Engines and Turbines, Combined Heat and Power (CHP) Plants and Fuel Cells,” Biogas Handbook, A. Wellinger , J. Murphy , and D. Baxter , eds., Elsevier, Cambridge, UK, pp. 404–427.
Rasi, S. , Veijanen, A. , and Rintala, J. , 2007, “ Trace Compounds of Biogas From Different Biogas Production Plants,” Energy, 32(8), pp. 1375–1380. [CrossRef]
Turco, M. , Ausiello, A. , and Micoli, L. , 2016, “ The Use of Biogas in MCFCs and SOFCs Technology: Adsorption Processes and Adsorbent Materials for Removal of Noxious Compounds,” Treatment of Biogas for Feeding High Temperature Fuel Cells. Green Energy and Technology, Springer, Cham, Switzerland, pp. 95–130.
Hagen, A. , Rasmussen, J. F. B. , and Thydén, K. , 2011, “ Durability of Solid Oxide Fuel Cells Using Sulfur Containing Fuels,” J. Power Sources., 196(17), pp. 7271–7276. [CrossRef]
Rostrup-Nielsen, J. R. , Hansen, J. B. , Helveg, S. , Christiansen, N. , and Jannasch, A.-K. , 2006, “ Sites for Catalysis and Electrochemistry in Solid Oxide Fuel Cell (SOFC) Anode,” Appl. Phys. A., 85(4), pp. 427–430. [CrossRef]
Bao, J. , Krishnan, G. N. , Jayaweera, P. , Perez-Mariano, J. , and Sanjurjo, A. , 2009, “ Effect of Various Coal Contaminants on the Performance of Solid Oxide Fuel Cells—Part I: Accelerated Testing,” J. Power Sources., 193(2), pp. 607–616. [CrossRef]
Turco, M. , Ausiello, A. , and Micoli, L. , 2016, “ The Effect of Biogas Impurities on SOFC,” Treatment Biogas Feeding High Temperature Fuel Cells, Springer, Cham, Switzerland, pp. 137–149.
Shekhawat, D. , Spivey, J. J. , and Berry, D. A. , 2011, Fuel Cells: Technologies for Fuel Processing, 1st ed., Elsevier Science, Oxford, UK.
Donau Carbon, 2011, Desorex K43a Material Safety Data Sheet, Donau Carbon GmbH, Frankfurt am Main, Germany.
Clariant, 2008, Clariant GS 6 Material Saftedy Data Sheet, Clariant International, Muttenz, Switzerland.
Herout, M. , Malathacek̃ák, J. , Kučera, L. , and Dlabaja, T. , 2011, “ Biogas Composition Depending on the Type of Plant Biomass Used,” Res. Agric. Eng., 57(4), pp. 137–143. [CrossRef]
Crittenden, B. D. , and Thomas, W. J. , 1998, Adsorption Technology and Design, 1st ed., Butterworth-Heinemann, Oxford, UK.
Henning, K. , 1991, Aktivkohlen: Herstellungsverfahren und Produkteigenschaften [Vortrag] Seminar Wuppertal, 18. und 19. April 1991, Aktivkohlen in Technik und Umweltschutz der Technischen Akademie Wuppertal, CarboTech-Aktivkohlen GmbH, Essen, Germany.
Reppich, M. , Datzmann, S. , Li, X. , Rosenbauer, S. , Schlecht, C. , and Tschepur, S. , 2009, “ Vergleich Verschiedener Aufbereitungsverfahren Von Biogas Zur Einspeisung in Das Erdgasnetz,” Chem. Ing. Tech., 81(3), pp. 211–223. [CrossRef]
Castrillon, M. C. , Moura, K. O. , Alves, C. A. , Bastos-Neto, M. , Azevedo, D. C. S. , Hofmann, J. , Möllmer, J. , Einicke, W.-D. , and Gläser, R. , 2016, “ CO2 and H2S Removal From CH4—Rich Streams by Adsorption on Activated Carbons Modified With K2CO3, NaOH, or Fe2O3,” Energy Fuels, 30(11), pp. 9596–9604. [CrossRef]
Przepiorski, J. , and Oya, A. , 1998, “ K2CO3-Loaded Deodorizing Activated Carbon Fibre Against H2S Gas: Factors Influencing the Deodorizing Efficiency and the Regeneration Method,” J. Mater. Sci. Lett., 17(8), pp. 679–682. [CrossRef]
Husmann, M. , Hochenauer, C. , Meng, X. , de Jong, W. , and Kienberger, T. , 2014, “ Evaluation of Sorbents for High Temperature In Situ Desulfurization of Biomass-Derived Syngas,” Energy Fuels., 28(4), pp. 2523–2534. [CrossRef]
Elseviers, W. F. , and Verelst, H. , 1999, “ Transition Metal Oxides for Hot Gas Desulphurisation,” Fuel, 78(5), pp. 601–612. [CrossRef]
Weinlaender, C. , Neubauer, R. , and Hochenauer, C. , 2016, “ Low-Temperature H2S Removal for Solid Oxide Fuel Cell Application With Metal Oxide Adsorbents,” Adsorpt. Sci. Technol., 35(1–2), pp. 120–136.
Weinlaender, C. , Neubauer, R. , Hauth, M. , and Hochenauer, C. , 2017, “ Influence of Gas Composition and Steam on Removing H2S From Biogas Using Sorbents for SOFC Applications,” Chem. Ing. Tech., 89(9), pp. 1247–1254. [CrossRef]
Vögtlin Instruments GmbH, 2018, Thermal Mass Flow Meters and Controllers for Gases, Vögtlin Instruments GmbH, Aesch, Switzerland.
LAUDA-Brinkmann, 2017, LAUDA—Thermostats, Circulation Chillers, Water Baths, Delran, NJ.
ABB, 2010, “ ABB Advance Optima Module Limas 11 Service Manual,” ABB, Frankfurt am Main, Germany.
Novochinskii, I. , Song, C. , Ma, X. , Liu, X. , Shore, L. , Jordan Lampert, A. , and Farrauto, R. J. , 2004, “ Low-Temperature H2S Removal From Steam-Containing Gas Mixtures With ZnO for Fuel Cell Application—1: ZnO Particles and Extrudates,” Energy Fuels, 18(2), pp. 576–583. [CrossRef]
Clariant, 2012, “ Material Safety Data Sheet Clariant Reformax 100,” Clariant International, Muttenz, Switzerland.
ABB, 2010, “ Advance Optima Caldos 17 Service Manual,” ABB, Frankfurt am Main, Germany.
ABB, 2010, “ Advance Optima Uras 14 Service Manual,” ABB, Frankfurt am Main, Germany.
Megel, S. , Kusnezoff, M. , Trofimenko, N. , Sauchuk, V. , Michaelis, A. , Venskutonis, A. , Rissbacher, K. , Kraussler, W. , Brandner, M. , Bienert, C. , and Sigl, L. S. , 2011, “ High Efficiency CFY-Stack for High Power Applications,” ECS Transactions, The Electrochemical Society, Pennington, NJ, pp. 269–277.
Bošnjaković, F. , and Knoche, K. F. , 1998, Technische Thermodynamik Teil I, Steinkopff, Heidelberg, Germany.
Herold, K. E. , Radermacher, R. , and Klein, S. A. , 1996, Absorption Chillers and Heat Pumps, Taylor & Francis, Boca Raton, FL.
Turco, M. , Ausiello, A. , and Micoli, L. , 2016, Treatment of Biogas for Feeding High Temperature Fuel Cells: Removal of Harmful Compounds by Adsorption Processes, Springer, Cham, Switzerland.
Sattler, K. , and Feindt, H. J. , 1995, Thermal Separation Processes: Principles and Design, Wiley-VCH Verlag GmbH, Weinheim, Germany.
Albert, J. , and Rieberer, R. , 2017, “ Experimentelle Und Simulationsgestützte Analyse einer Absorptionskältemaschine für KWKK-Anlagen,” Proc. Deutsche Kälte-Klima-Tagung 2017, AA II.1.16, Bremen, Germany.
Hauth, M. , Seidl, M. , Postl, A. , Sallai, C. , Soukup, N. , Albert, J. , Weinländer, C. , Rieberer, R. , and Hochenauer, C. , 2017, “ Development of a Highly Flexible SOFC CCHP System Towards Demand-Oriented Power Generation From Renewable Fuels,” ECS Trans., 78(1), pp. 155–170. [CrossRef]
Hauth, M. , Seidl, M. , Sallai, C. , Soukup, N. , Postl, A. , Rieberer, R. , and Albert, J. , 2018, “ Development of a SOFC CCHP System Towards Flexible Production of Electricity, Heat and Cooling Power for Transport Applications,” Transport Research Arena Conference (TRA 2018), Vienna, Austria, Apr. 16–19.


Grahic Jump Location
Fig. 1

Theoretical calculation of prime energy utilization based on traditional energy supply mode (top) and CCHP system (bottom) [1]

Grahic Jump Location
Fig. 2

Solid oxide fuel cell based CCHP system flowsheet

Grahic Jump Location
Fig. 3

Energy balance of the SOFC CCHP system

Grahic Jump Location
Fig. 4

Scheme of a possible application scenario of the SOFC CCHP

Grahic Jump Location
Fig. 5

Flowchart of adsorption test rig

Grahic Jump Location
Fig. 6

Flowchart of nickel catalyst test rig

Grahic Jump Location
Fig. 7

(a) Picture of SOFC test rig and (b) flowchart of SOFC test rig

Grahic Jump Location
Fig. 8

(a) Picture of the AC test rig and (b) scheme of the AC test rig

Grahic Jump Location
Fig. 9

Effect of gas composition on H2S outlet concentration; reaction temperature 60 °C; GHSV 8000 h−1; and H2S inlet concentration 200 ppmv

Grahic Jump Location
Fig. 10

Facing the experimental results and the simulated equilibria; S/C ratio = 2 and GHSV 1000 h−1

Grahic Jump Location
Fig. 11

Comparison between test runs with GHSV 1000 and 1500 h−1; S/C = 2 and temperature 600 °C

Grahic Jump Location
Fig. 12

Reference point ηFU = 60%

Grahic Jump Location
Fig. 13

Consequences of r on COP at different T10

Grahic Jump Location
Fig. 14

Consequences of r on εSHX at different T10

Grahic Jump Location
Fig. 15

Consequences of r on cooling capacity and xref

Grahic Jump Location
Fig. 16

Efficiencies of the AC and SOFC CCHP in dependence of the exhaust gas mass flow rate

Grahic Jump Location
Fig. 17

Capacities of the AC and SOFC CCHP in dependence of the exhaust gas mass flow rate



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In