0
Research Papers

Characterization of New Nonstoichiometric Ferroelectric (Li0.95Cu0.15)Ta0.76Nb0.19O3 and Comparative Study With (Li0.95Cu0.15)Ta0.57Nb0.38O3 as Photocatalysts in Microbial Fuel Cells

[+] Author and Article Information
S. Louki

Laboratory of Spectroscopy, Molecular Modeling,
Materials, Nanomaterials,
Water and Environment,
Environmental Materials Team, ENSET,
Mohammed V University in Rabat,
Rabat 10100, Morocco
e-mail: sami.louki@um5s.net.ma

N. Touach

Laboratory of Spectroscopy, Molecular Modeling,
Materials, Nanomaterials, Water and Environment,
Environmental Materials Team,
ENSET,
Mohammed V University in Rabat,
Rabat 10100, Morocco
e-mail: noureddine.touach@um5s.net.ma

A. Benzaouak, M. El Mahi

Laboratory of Spectroscopy, Molecular Modeling,
Materials, Nanomaterials, Water and Environment,
Environmental Materials Team,
ENSET,
Mohammed V University in Rabat,
Rabat 10100, Morocco

V. M. Ortiz-Martínez

Department of Chemical and Environmental Engineering,
Technical University of Cartagena,
Campus Muralla Del Mar,
Murcia 30202, Spain
e-mail: victor.ortiz@upct.es

M. J. Salar-García

Department of Chemical and
Environmental Engineering,
Technical University of Cartagena,
Campus Muralla Del Mar,
Murcia 30202, Spain

F. J. Hernández-Fernández

Chemical Engineering Department,
University of Murcia,
Campus de Espinardo,
Murcia E-30071, Spain

A. P. de los Ríos

Chemical Engineering Department,
University of Murcia,
Campus de Espinardo,
Murcia E-30071, Spain

E. M. Lotfi

Laboratory of Spectroscopy, Molecular Modeling,
Materials, Nanomaterials, Water and Environment,
Environmental Materials Team,
ENSET,
Mohammed V University in Rabat,
Rabat 10100, Morocco
e-mail: lotfi58@yahoo.fr

1Corresponding authors.

Manuscript received September 13, 2018; final manuscript received November 4, 2018; published online December 12, 2018. Assoc. Editor: Nianqiang Wu.

J. Electrochem. En. Conv. Stor. 16(2), 021009 (Dec 12, 2018) (7 pages) Paper No: JEECS-18-1099; doi: 10.1115/1.4041982 History: Received September 13, 2018; Revised November 04, 2018

This work investigates the photocatalytic activity of new ferroelectric material with formula (Li0.95Cu0.15)Ta0.76Nb0.19O3 (LT76) in a single chamber microbial fuel cell (MFC) and compares its performance with the similar photocatalyst (Li0.95Cu0.15)Ta0.57Nb0.38O3 (LT57). The photocatalysts LT76 and LT57 were synthesized by ceramic route under the same conditions, with the same starting materials. The ratio Ta/Nb was fixed at 4.0 and 1.5 for LT76 and LT57, respectively. These phases were characterized by different techniques including X-ray diffraction (XRD), transmission electronic microscopy (TEM), particle size distribution (PSD), differential scanning calorimetry (DSC), and ultraviolet (UV)–visible (Vis). The new photocatalyst LT76 presents specific surface area of 0.791 m2/g and Curie temperature of 1197 °C. The photocatalytic efficiency of this material is assessed in terms of wastewater treatment and electricity generation by power density and removal rate of chemical oxygen demand (COD) in the presence of a light source. The values of maximum power density and COD removal were 19.77 mW/m3 and 93%, respectively, for LT76.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Santoro, C. , Arbizzani, C. , Erable, B. , and Ieropoulos, I. , 2017, “ Microbial Fuel Cells: From Fundamentals to Applications: A Review,” J. Power Sources, 356, pp. 225–244. [CrossRef] [PubMed]
Logan, B. E. , and Regan, J. M. , 2006, “ Microbial Fuel Cells-Challenges and Applications,” Environ. Sci. Technol., 40(17), pp. 5172–5180. [CrossRef] [PubMed]
Huang, L. , and Logan, B. E. , 2008, “ Electricity Generation and Treatment of Paper Recycling Wastewater Using a Microbial Fuel Cell,” Appl. Microbiol. Biotechnol., 80(2), pp. 349–355. [CrossRef] [PubMed]
Min, B. , Kim, J. , Oh, S. , Regan, J. M. , and Logan, B. E. , 2005, “ Electricity Generation From Swine Wastewater Using Microbial Fuel Cells,” Water Res., 39(20), pp. 4961–4968. [CrossRef] [PubMed]
Massé, D. , and Masse, L. , 2001, “ The Effect of Temperature on Slaughterhouse Wastewater Treatment in Anaerobic Sequencing Batch Reactors,” Bioresour. Technol., 76(2), pp. 91–98.
Liu, H. , Cheng, S. , and Logan, B. E. , 2005, “ Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration,” Environ. Sci. Technol., 39(14), pp. 5488–5493. [CrossRef] [PubMed]
Schröder, U. , Nießen, J. , and Scholz, F. , 2003, “ A Generation of Microbial Fuel Cells With Current Outputs Boosted by More Than One Order of Magnitude,” Angew. Chem. Int. Ed. Engl., 42(25), pp. 2880–2883. [CrossRef] [PubMed]
Chaudhuri, S. K. , and Lovley, D. R. , 2003, “ Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells,” Nat. Biotechnol., 21(10), pp. 1229–1232. [CrossRef] [PubMed]
Morris, J. M. , Jin, S. , Wang, J. , Zhu, C. , and Urynowiczc, M. A. , 2007, “ Lead Dioxide as an Alternative Catalyst to Platinum in Microbial Fuel Cells,” Urynowicz, Electrochem. Commun., 9(7), pp. 1730–1734. [CrossRef]
Gil, G.-C. , Chang, I.-S. , Kim, B. H. , Kim, M. , Jang, J.-K. , Park, H. S. , and Kim, H. J. , 2003, “ Operational Parameters Affecting the Performannce of a Mediator-Less Microbial Fuel Cell,” Biosens. Bioelectron., 18(4), pp. 327–334. [CrossRef] [PubMed]
He, Z. , and Angenent, L. T. , 2006, “ Application of Bacterial Biocathodes in Microbial Fuel Cells,” Electroanalysis, 18(19–20), pp. 2009–2015. [CrossRef]
Liu, H. , and Logan, B. E. , 2004, “ Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane,” Environ. Sci. Technol., 38(14), pp. 4040–4046. [CrossRef] [PubMed]
Rabaey, K. , Clauwaert, P. , Aelterman, P. , and Verstraete, W. , 2005, “ Tubular Microbial Fuel Cells for Efficient Electricity Generation,” Environ. Sci. Technol., 39(20), pp. 8077–8082. [CrossRef] [PubMed]
Tartakovsky, B. , and Guiot, S. R. , 2006, “ A Comparison of Air and Hydrogen Peroxide Oxygenated Microbial Fuel Cell Reactors,” Biotechnol. Prog., 22(1), pp. 241–246. [CrossRef] [PubMed]
Zhang, E. , Xu, W. , Diao, G. , and Shuang, C. , 2006, “ Electricity Generation From Acetate and Glucose by Sedimentary Bacterium Attached to Electrode in Microbial-Anode Fuel Cells,” J. Power Sources, 161(2), pp. 820–825. [CrossRef]
Zhou, M. , Chi, M. , Luo, J. , He, H. , and Jin, T. , 2011, “ An Overview of Electrode Materials in Microbial Fuel Cells,” J. Power Sources, 196(10), pp. 4427–4435. [CrossRef]
Kim, J. R. , Min, B. , and Logan, B. E. , 2005, “ Evaluation of Procedures to Acclimate a Microbial Fuel Cell for Electricity Production,” App. Microbiol. Biotechnol., 68(1), pp. 23–30. [CrossRef]
Lowy, D. A. , Tender, L. M. , Zeikus, J. G. , Park, D. H. , and Lovley, D. R. , 2006, “ Harvesting Energy From the Marine Sediment–Water Interface II: Kinetic Activity of Anode Materials,” Biosens. Bioelectron., 21(11), pp. 2058–2063. [CrossRef] [PubMed]
Park, H. I. , Sanchez, D. , Cho, S. K. , and Yun, M. , 2008, “ Bacterial Communities on Electron-Beam Pt-Deposited Electrodes in a Mediator-Less Microbial Fuel Cell,” Environ. Sci. Technol., 42(16), pp. 6243–6249. [CrossRef] [PubMed]
ter Heijne, A. , Hamelers, H. V. M. , Saakes, M. , and Buisman, C. J. N. , 2008, “ Performance of Non-Porous Graphite and Titanium-Based Anodes in Microbial Fuel Cells,” Buisman, Electrochimin. Acta, 53(18), pp. 5697–5703. [CrossRef]
Martin, E. , Tartakovsky, B. , and Savadogo, O. , 2011, “ Cathode Materials Evaluation in Microbial Fuel Cells: A Comparison of Carbon, Mn2O3, Fe2O3 and Platinum Materials,” Electrochim. Acta, 58, pp. 58–66. [CrossRef]
Lu, A. , Li, Y. , Jin, S. , Ding, H. , Zeng, C. , Wang, X. , and Wang, C. , 2009, “ Microbial Fuel Cell Equipped With a Photocatalytic Rutile-Coated Cathode,” Energy Fuels, 24, pp. 1184–1190. [CrossRef]
Lv, Z. , Xie, D. , Yue, X. , Feng, C. , and Wei, C. , 2012, “ Ruthenium Oxide-Coated Carbon Felt Electrode: A Highly Active Anode for Microbial Fuel Cell Applications,” J. Power Sources, 210, pp. 26–31. [CrossRef]
Zhang, Y. , Hu, Y. , Li, S. , Sun, J. , and Hou, B. , 2011, “ Manganese Dioxide-Coated Carbon Nanotubes as an Improved Cathodic Catalyst for Oxygen Reduction in a Microbial Fuel Cell,” J. Power Sources, 196(22), pp. 9284–9289. [CrossRef]
Gong, X.-B. , You, S.-J. , Wang, X.-H. , Zhang, J.-N. , Gan, Y. , and Ren, N.-Q. , 2014, “ A Novel Stainless Steel Mesh/Cobalt Oxide Hybrid Electrode for Efficient Catalysis of Oxygen Reduction in a Microbial Fuel Cell,” Biosens. Bioelectron., 55, pp. 237–241. [CrossRef] [PubMed]
Chen, Y.-M. , Wang, C.-T. , Yang, Y.-C. , and Chen, W.-J. , 2013, “ Application of Aluminum-Alloy Mesh Composite Carbon Cloth for the Design of Anode/Cathode Electrodes in Escherichia Coli Microbial Fuel Cell,” Int. J. Hydrogen Energy, 38(25), pp. 11131–11137. [CrossRef]
Song, T.-S. , Wang, D.-B. , Wang, H. , Li, X. , Liang, Y. , and Xie, J. , 2015, “ Cobalt Oxide/Nanocarbon Hybrid Materials as Alternative Cathode Catalyst for Oxygen Reduction in Microbial Fuel Cell,” Int. J. Hydrogen Energy, 40(10), pp. 3868–3874. [CrossRef]
Ghasemi, M. , Ismail, M. , Kamarudin, S. K. , Saeedfar, K. , Daud, W. R. W. , Hassan, S. H. , Heng, L. Y. , Alam, J. , and Oh, S.-E. , 2013, “ Carbon Nanotube as an Alternative Cathode Support and Catalyst for Microbial Fuel Cells,” App. Energy, 102, pp. 1050–1056. [CrossRef]
Liu, X.-W. , Li, W.-W. , and Yu, H.-Q. , 2014, “ Cathodic Catalysts in Bioelectrochemical Systems for Energy Recovery From Wastewater,” Chem. Soc. Rev., 43(22), pp. 7718–7745. [CrossRef] [PubMed]
Cui, Y. , Briscoe, J. , and Dunn, S. , 2013, “ Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3-Influence on the Carrier Separation and Stern Layer Formation,” Chem. Mater., 25(21), pp. 4215–4223. [CrossRef]
Shoeib, M. A. , Abdelsalam, O. E. , Khafagi, M. G. , and Hammam, R. E. , 2012, “ Synthesis of Cu2O Nanocrystallites and Their Adsorption and Photocatalysis Behavior,” Adv. Powder Technol., 23(3), pp. 298–304. [CrossRef]
Zhao, Q. , Wang, J. , Li, Z. , Qiao, Y. , Jin, C. , and Guo, Y. , 2016, “ Preparation of Cu2O/Exfoliated Graphite Composites With High Visible Light Photocatalytic Performance and Stability,” Ceram. Int., 42(11), pp. 13273–13277. [CrossRef]
Chen, J. , Liu, X. , Zhang, H. , Liu, P. , Li, G. , An, T. , and Zhao, H. , 2016, “ Soft-Template Assisted Synthesis of Mesoporous CuO/Cu2O Composite Hollow Microspheres as Efficient Visible-Light Photocatalyst,” Mater. Lett., 182, pp. 47–51. [CrossRef]
Grabowska, E. , 2016, “ Selected Perovskite Oxides: Characterization, Preparation and Photocatalytic Properties—A Review,” App. Catal. B: Environ., 186, pp. 97–126. [CrossRef]
Stock, M. , and Dunn, S. , 2012, “ Influence of the Ferroelectric Nature of Lithium Niobate to Drive Photocatalytic Dye Decolorization Under Artificial Solar Light,” J. Phys. Chem. C, 116(39), pp. 20854–20859. [CrossRef]
Louki, S. , Touach, N. , Benzaouak, A. , Salar-García, M. J. , Ortiz-Martínez, V. M. , Hernández-Fernández, F. J. , Ríos, A. P. , El Mahi, M. , and Lotfi, E. M. , 2017, “ Preparation of New Ferroelectric Li0.95Ta0.57Nb0.38Cu0.15O3 Materials as Photocatalysts in Microbial Fuel Cells,” Can. J. Chem. Eng., 9999(8), pp. 1656–1662. https://onlinelibrary.wiley.com/doi/full/10.1002/cjce.23117
Hernández-Fernández, F. , de los Ríos, A. P. , Mateo-Ramírez, F. , Godínez, C. , Lozano-Blanco, L. , Moreno, J. , and Tomás-Alonso, F. , 2015, “ New Application of Supported Ionic Liquids Membranes as Proton Exchange Membranes in Microbial Fuel Cell for Waste Water Treatment,” Chem. Eng. J., 279, pp. 115–119. [CrossRef]
Benzaouak, A. , Touach, N. , Ortiz-Martínez, V. M. , Salar-García, M. J. , Hernández-Fernández, F. J. , Pérez de los Ríos, A. , El Mahi, M. , and Lotfi, E. M. , 2017, “ Ferroelectric LiTaO3 as Novel Photo‐Electrocatalyst in Microbial Fuel Cells,” Environ. Prog. Sustainable Energy, 36(5), pp. 1568–1574. https://onlinelibrary.wiley.com/doi/full/10.1002/ep.12609
Touach, N. , Ortiz-Martínez, V. , Salar-García, M. , Benzaouak, A. , Hernández-Fernández, F. , de Ríos, A. , El Mahi, M. , and Lotfi, E. M. , 2017, “ On the Use of Ferroelectric Material LiNbO3 as Novel Photocatalyst in Wastewater-Fed Microbial Fuel Cells,” Particuology, 34, pp. 147–155. [CrossRef]
Gautier, J. , Restovic, A. , and Chartier, P. , 1989, “ Electrocatalyse de la Réduction de L'oxygène Sur Oxyde Mixte: Cu1+x Mn2−xO4 en Milieu Alcalin. Etude Par Électrode Disque-Anneau,” J. Appl. Electrochem., 19(1), pp. 28–36. [CrossRef]
De Jongh, P. , Vanmaekelbergh, D. , and Kelly, J. , 1999, “ Cu2O: Electrodeposition and Characterization,” Chem. Mater., 11(12), pp. 3512–3517. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

X-ray diffractograms of LiTa0.8Nb0.2O3 and LT76

Grahic Jump Location
Fig. 2

Transmission electron microscopy and EDX for LT76 photocatalyst

Grahic Jump Location
Fig. 3

Particle size distribution of LT76 photocatalyst

Grahic Jump Location
Fig. 4

DSC for LT76 photocatalyst

Grahic Jump Location
Fig. 5

UV–Visible absorption spectrum

Grahic Jump Location
Fig. 6

Variation of (αE)2 as a function of the energy hν of LiTa0.8Nb0.2O3, LiTa0.6Nb0.4O3, LT57, and LT76

Grahic Jump Location
Fig. 7

Polarization test of MFC using LT76 as photocatalyst

Grahic Jump Location
Fig. 8

Power density curve of MFC based on LT76 as photocatalyst

Grahic Jump Location
Fig. 9

Variation of COD removal versus time of MFC using LT76 as photocatalyst

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In