Newest Issue

Research Papers

J. Electrochem. En. Conv. Stor.. 2017;14(4):041001-041001-9. doi:10.1115/1.4036956.

The potential of an energy system that comprises hydrogen-fueled polymer electrolyte fuel cells (PEFCs), a steam reformer, and a hydrogen storage tank, using surplus hydrogen produced from an oil refinery, was evaluated using a mathematical model based on linear programming. The aim of this study was to optimize the capacity of the hydrogen-fueled PEFC, the hydrogen production of the steam reformer, and the utilization amount of the hydrogen storage tank in order to minimize the total system cost. Based on the optimization results, the system cost reduction and CO2 emission reduction effects were calculated in relation to the power generation efficiency and the installation cost of the hydrogen-fueled PEFC. As a result, the conditions for the hydrogen-fueled PEFC where a system cost reduction could be achieved in the PEFC power generation system, compared with the conventional system, were shown to be an initial cost lower than 3000 $/kW for a power generation efficiency of 50% or an initial cost lower than 5000 $/kW for a power generation efficiency of 65%.

Commentary by Dr. Valentin Fuster
J. Electrochem. En. Conv. Stor.. 2017;14(4):041002-041002-8. doi:10.1115/1.4037232.

The effects of isothermally long-term and thermal cycling tests on the performance of an ASC type commercial solid oxide fuel cell (SOFC) have been investigated. For the long-term test, the cells were tested over 5000 h in two stages, the first 3000 h and the followed 2000 h, under the different flow rates of hydrogen and air. Regarding the thermal cycling test, 60 cycles in total were also divided into two sections, the temperature ranges of 700 °C to 250 °C and 700 °C to 50 °C were applied for the every single cycle of first 30 cycles and the later 30 cycles, respectively. The results of long-term test show that the average degradation rates for the cell in the first 3000 h and the followed 2000 h under different flow rates of fuel and air are 1.16 and 2.64%/kh, respectively. However, there is only a degradation of 6.6% in voltage for the cell after 60 thermal cycling tests. In addition, it is found that many pores formed in the anode of the cell which caused by the agglomeration of Ni after long-term test. In contrast, the vertical cracks penetrating through the cathode of the cell and the in-plane cracks between the cathode and barrier layer of the cell formed due to the coefficient of thermal expansion (CTE) mismatch after 60 thermal cycling tests.

Commentary by Dr. Valentin Fuster
J. Electrochem. En. Conv. Stor.. 2017;14(4):041003-041003-7. doi:10.1115/1.4037391.

Flow field plays an important role in the performances of the fuel cells, especially in large area fuel cells. In the present work, an innovative, versatile flow field, capable of combining in different conventional modes is reported and evaluated in a polymer electrolyte fuel cell (PEFC) with an active area of 150 cm2. The proposed design is capable of offering serpentine, interdigitated, counterflow, dead-end, and serpentine-interdigitated hybrid mode. Moreover, it is possible to switch over from one flow mode to another mode of flow during operation at any point of time. The flow design consists of the multichannel parallel serpentine flow (SP) field and a pair of an inlet and outlet manifolds instead of conventional single inlet and outlet manifold. Flow distribution was successfully altered without affecting the performances, and it was observed a combination of serpentine and interdigitated on the cathode side offered steady performance for more than 20 min when it was operated at a current density of 700 mA cm−2.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In