A parametric investigation has been performed to study the different operating limits of heat pipes employing a novel type of metal foam as wick for chip cooling applications. These foams have a unique spherical pore cluster microstructure with very high surface to volume ratio compared to traditional metal foams and exhibit higher operating limits in preliminary tests of heat pipes, suggesting high cooling rates for microelectronics. In the first part of this parametric study, widely used correlations are applied to calculate the five types of heat transfer limits (capillary, boiling, viscous, entrainment and sonic) as a function of temperature, type of foam, and porosity. Results show that the dominant limit is mostly the capillary limit, but for 50 pore-per-inch (PPI) foam, the boiling limit will be dominant. Also, 50 and 60 PPI foams have higher heat transfer limits than sintered copper powder. In the second part of this study, thermodynamic steady state modeling of a flat heat pipe has been done to study the effect of the different parameters on the dominant limit (capillary). A dimensionless number has been proposed to evaluate the balance between the pressure loss in the vapor and liquid phases as an additional design guideline to improve the capillary limit in flat heat pipes.
Skip Nav Destination
ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5450-1
PROCEEDINGS PAPER
A Parametric Investigation of Operating Limits in Heat Pipes Using Novel Metal Foams as Wicks
Mahmood R. S. Shirazy,
Mahmood R. S. Shirazy
Universite´ de Sherbrooke, Sherbrooke, QC, Canada
Search for other works by this author on:
Luc G. Fre´chette
Luc G. Fre´chette
Universite´ de Sherbrooke, Sherbrooke, QC, Canada
Search for other works by this author on:
Mahmood R. S. Shirazy
Universite´ de Sherbrooke, Sherbrooke, QC, Canada
Luc G. Fre´chette
Universite´ de Sherbrooke, Sherbrooke, QC, Canada
Paper No:
FEDSM-ICNMM2010-31268, pp. 575-583; 9 pages
Published Online:
March 1, 2011
Citation
Shirazy, MRS, & Fre´chette, LG. "A Parametric Investigation of Operating Limits in Heat Pipes Using Novel Metal Foams as Wicks." Proceedings of the ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels: Parts A and B. Montreal, Quebec, Canada. August 1–5, 2010. pp. 575-583. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-31268
Download citation file:
43
Views
Related Proceedings Papers
Fabrication of a Vapor Chamber on a Plastic Board
InterPACK2015
Related Articles
Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat Pipe
J. Heat Transfer (August,2009)
Characterization of Air Flow Through Sintered Metal Foams
J. Fluids Eng (May,2008)
Flow Boiling Heat Transfer in Horizontal Metal-Foam Tubes
J. Heat Transfer (December,2009)
Related Chapters
Thermal Design Guide of Liquid Cooled Systems
Thermal Design of Liquid Cooled Microelectronic Equipment
Comparison of the Availability of Trip Systems for Reactors with Exothermal Reactions (PSAM-0361)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Liquid Cooled Systems
Thermal Management of Telecommunications Equipment