In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials with imperfect interface conditions are derived based on the extended Stroh formalism and the Mindlin’s superposition method. Four different interface models are considered: perfect-bond, smooth-bond, dislocation-like, and force-like. While the first one is for a perfect interface, other three models are for imperfect ones. By introducing certain modified eigenmatrices, it is shown that the bimaterial Green’s functions for the three imperfect interface conditions have mathematically similar concise expressions as those for the perfect-bond interface. That is, the physical-domain bimaterial Green’s functions can be obtained as a sum of a homogeneous full-space Green’s function in an explicit form and a complementary part in terms of simple line-integrals over [0,π] suitable for standard numerical integration. Furthermore, the corresponding two-dimensional bimaterial Green’s functions have been also derived analytically for the three imperfect interface conditions. Based on the bimaterial Green’s functions, the effects of different interface conditions on the displacement and stress fields are discussed. It is shown that only the complementary part of the solution contributes to the difference of the displacement and stress fields due to different interface conditions. Numerical examples are given for the Green’s functions in the bimaterials made of two anisotropic half-spaces. It is observed that different interface conditions can produce substantially different results for some Green’s stress components in the vicinity of the interface, which should be of great interest to the design of interface. Finally, we remark that these bimaterial Green’s functions can be implemented into the boundary integral formulation for the analysis of layered structures where imperfect bond may exist.

1.
Dundurs
,
J.
, and
Hetenyi
,
M.
,
1965
, “
Transmission of Force Between Two Semi-infinite Solids
,”
ASME J. Appl. Mech.
,
32
, pp.
671
674
.
2.
Mura
,
T.
, and
Furuhashi
,
R.
,
1984
, “
The Elastic Inclusion With a Sliding Interface
,”
ASME J. Appl. Mech.
,
51
, pp.
308
310
.
3.
Benveniste
,
Y.
,
1984
, “
The Effect of Mechanical Behavior of Composite Materials With Imperfect Contact Between the Constituents
,”
Mech. Mater.
,
4
, pp.
197
208
.
4.
Tsuchida
,
E.
,
Mura
,
T.
, and
Dundurs
,
J.
,
1986
, “
The Elastic Field of an Elliptic Inclusion With Slipping Interface
,”
ASME J. Appl. Mech.
,
52
, pp.
103
108
.
5.
Achenbach
,
J. D.
, and
Zhu
,
H.
,
1989
, “
Effect of Interfacial Zone on Mechanical Behavior and Failure of Fiber-Reinforced Composites
,”
J. Mech. Phys. Solids
,
37
, pp.
381
393
.
6.
Pagano
,
N. J.
, and
Tandon
,
G. P.
,
1990
, “
Modeling of Imperfect Bonding in Fiber Reinforced Brittle Matrix
,”
Mech. Mater.
,
9
, pp.
49
64
.
7.
Hashin
,
Z.
,
1990
, “
Thermoelastic Properties of Fiber Composites With Imperfect Interface
,”
Mech. Mater.
,
8
, pp.
333
348
.
8.
Hashin
,
Z.
,
1991
, “
The Spherical Inclusion with Imperfect Interface
,”
ASME J. Appl. Mech.
,
58
, pp.
444
449
.
9.
Kouris
,
D.
,
1993
, “
Stress Concentration due to Interaction Between Two Imperfectly Bonded Fibers in a Continuous Fiber Composite
,”
ASME J. Appl. Mech.
,
60
, pp.
203
206
.
10.
Gao
,
Z.
,
1995
, “
A Circular Inclusion With Imperfect Interface: Eshelby’s Tensor and Related Problems
,”
ASME J. Appl. Mech.
,
62
, pp.
860
866
.
11.
Hanson
,
M. T.
, and
Keer
,
L. M.
,
1995
, “
Mechanics of Edge Effects on Frictionless Contacts
,”
Int. J. Solids Struct.
,
32
, pp.
391
405
.
12.
Meisner
,
M. J.
, and
Kouris
,
D. A.
,
1995
, “
Interaction of two Elliptic Inclusions
,”
Int. J. Solids Struct.
,
32
, pp.
451
466
.
13.
Zhong
,
Z.
, and
Meguid
,
S. A.
,
1996
, “
On the Eigenstrain Problem of a Spherical Inclusion With an Imperfectly Bonded Interface
,”
ASME J. Appl. Mech.
,
63
, pp.
877
883
.
14.
Yu
,
H. Y.
,
1998
, “
A New Dislocation-Like Model for Imperfect Interfaces and Their Effect on Load Transfer
,”
Composites
,
29A
, pp.
1057
1062
.
15.
Yu
,
H. Y.
,
Wei
,
Y. N.
, and
Chiang
,
F. P.
,
2002
, “
Load Transfer at Imperfect Interfaces—Dislocation-Like Model
,”
Int. J. Eng. Sci.
,
40
, pp.
1647
1662
.
16.
Benveniste
,
Y.
,
1999
, “
On the Decay of End Effects in Conduction Phenomena: A Sandwich Strip With Imperfect Interfaces of Low or High Conductivity
,”
J. Appl. Phys.
,
86
, pp.
1273
1279
.
17.
Shilkrot
,
L. E.
, and
Srolovitz
,
D. J.
,
1998
, “
Elastic Analysis of Finite Stiffness Bimaterial Interfaces: Application to Dislocation-Interface Interactions
,”
Acta Mater.
,
46
, pp.
3063
3075
.
18.
Shuvalov
,
A. L.
, and
Gorkunova
,
A. S.
,
1999
, “
Cutting-Off Effect at Reflection-Transmission of Acoustic Waves in Anisotropic Media With Sliding-Contact Interfaces
,”
Wave Motion
,
30
, pp.
345
365
.
19.
Gharpuray
,
V. M.
,
Dundurs
,
J.
, and
Keer
,
L. M.
,
1991
, “
A Crack Terminating at a Slipping Interface Between Two Materials
,”
ASME J. Appl. Mech.
,
58
, pp.
960
963
.
20.
Ru
,
C. Q.
,
1998
, “
Interface Design of Neutral Elastic Inclusions
,”
Int. J. Solids Struct.
,
35
, pp.
559
572
.
21.
Ru
,
C. Q.
,
1998
, “
A Circular Inclusion With Circumferentially Inhomogeneous Sliding Interface in Plane Elastosatics
,”
ASME J. Appl. Mech.
,
65
, pp.
30
38
.
22.
Pan
,
E.
,
Yang
,
B.
,
Cai
,
G.
, and
Yuan
,
F. G.
,
2001
, “
Stress Analyses Around Holes in Composite Laminates Using Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
25
, pp.
31
40
.
23.
Vijayakumar
,
S.
, and
Cormack
,
D. E.
,
1987
, “
Nuclei of Strain for Bi-Material Elastic Media With Sliding Interface
,”
J. Elast.
,
17
, pp.
285
290
.
24.
Yu
,
H. Y.
, and
Sanday
,
S. C.
,
1991
, “
Elastic Fields in Joined Half-spaces due to Nuclei of Strain
,”
Proc. R. Soc. London, Ser. A
,
434
, pp.
503
519
.
25.
Yu
,
H. Y.
,
Sanday
,
S. C.
,
Rath
,
B. B.
, and
Chang
,
C. I.
,
1995
, “
Elastic Fields due to Defects in Transversely Isotropic Bimaterials
,”
Proc. R. Soc. London, Ser. A
,
449
, pp.
1
30
.
26.
Davies
,
J. H.
, and
Larkin
,
I. A.
,
1994
, “
Theory of Potential Modulation in Lateral Surface Superlattices
,”
Phys. Rev. B
,
B49
, pp.
4800
4809
.
27.
Larkin
,
I. A.
,
Davies
,
J. H.
,
Long
,
A. R.
, and
Cusco
,
R.
,
1997
, “
Theory of Potential Modulation in Lateral Surface Superlattices. II. Piezoelectric Effect
,”
Phys. Rev. B
,
B56
, pp.
242
15
.
28.
Holy
,
V.
,
Springholz
,
G.
,
Pinczolits
,
M.
, and
Bauer
,
G.
,
1999
, “
Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices
,”
Phys. Rev. Lett.
,
83
, pp.
356
359
.
29.
Ru
,
C. Q.
,
1999
, “
Analytic Solution for Eshelby’s Problem of an Inclusion of Arbitrary Shape in a Plane or Half-Plane
,”
ASME J. Appl. Mech.
,
66
, pp.
315
322
.
30.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.
31.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd Ed., Martinus Nijhoff Publishers, Dordrecht, The Netherlands.
32.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
, pp.
625
646
.
33.
Stroh
,
A. N.
,
1962
, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
,
41
, pp.
77
103
.
34.
Ting, T. C. T., 1996, Anisotropic Elasticity, Oxford University Press, Oxford, UK.
35.
Ting
,
T. C. T.
,
2000
, “
Recent Developments in Anisotropic Elasticity
,”
Int. J. Solids Struct.
,
37
, pp.
401
409
.
36.
Wu
,
K. C.
,
1998
, “
Generalization of the Stroh Formalism to Three-Dimensional Anisotropic Elasticity
,”
J. Elast.
,
51
, pp.
213
225
.
37.
Pan
,
E.
, and
Yuan
,
F. G.
,
2000
, “
Three-Dimensional Green’s Functions in Anisotropic Bimaterials
,”
Int. J. Solids Struct.
,
37
, pp.
5329
5351
.
38.
Mindlin
,
R. D.
,
1936
, “
Force at a Point in the Interior of a Semi-Infinite Solid
,”
Physica (Amsterdam)
,
7
, pp.
195
202
.
39.
Tewary
,
V. K.
,
1995
, “
Computationally Efficient Representation for Elastostatic and Elastodynamic Green’s Functions
,”
Phys. Rev. B
,
51
, pp.
695
15
.
40.
Ting
,
T. C. T.
, and
Lee
,
V. G.
,
1997
, “
The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solids
,”
Q. J. Mech. Appl. Math.
,
50
, pp.
407
426
.
41.
Sales
,
M. A.
, and
Gray
,
L. J.
,
1998
, “
Evaluation of the Anisotropic Green’s Function and Its Derivatives
,”
Comput. Struct.
,
69
, pp.
247
254
.
42.
Tonon
,
F.
,
Pan
,
E.
, and
Amadei
,
B.
,
2001
, “
Green’s Functions and BEM Formulation for 3D Anisotropic Media
,”
Comput. Struct.
,
79
, pp.
469
482
.
43.
Walker
,
K. P.
,
1993
, “
Fourier Integral Representation of the Green’s Function for an Anisotropic Elastic Half-Space
,”
Proc. R. Soc. London, Ser. A
,
443
, pp.
367
389
.
44.
Benveniste
,
Y.
, and
Chen
,
T.
,
2001
, “
On the Saint-Venant Torsion of Composite Bars With Imperfect Interfaces
,”
Proc. R. Soc. London, Ser. A
,
457
, pp.
231
255
.
45.
Hashin
,
Z.
,
2001
, “
Thin Interphase/Imperfect Interface in Conduction
,”
J. Appl. Phys.
,
89
, pp.
2261
2267
.
46.
Pan
,
E.
,
2003
, “
Three-Dimensional Green’s Functions in an Anisotropic Half Space With General Boundary Conditions
,”
ASME J. Appl. Mech.
,
125
, pp.
101
110
.
47.
Pan
,
E.
,
2002
, “
Three-Dimensional Green’s Functions in Anisotropic Magneto-Electro-Elastic Bimaterials
,”
J. Appl. Math. Phys.
,
53
, pp.
815
838
.
48.
Pan
,
E.
, and
Amadei
,
B.
,
1999
, “
Boundary Element Analysis of Fracture Mechanics in Anisotropic Bimaterials
,”
Eng. Anal. Boundary Elem.
,
23
, pp.
683
691
.
49.
Pan, E., and Yang, B., 2003, “Three-Dimensional Interfacial Green’s Functions in Anisotropic Bimaterials,” Appl. Math. Model., in press.
You do not currently have access to this content.