Soft network materials constructed with horseshoe microstructures represent a class of bio-inspired synthetic materials that can be tailored precisely to match the nonlinear, J-shaped, stress–strain curves of human skins. Under a large level of stretching, the nonlinear deformations associated with the drastic changes of microstructure geometries can lead to an evident mechanical anisotropy, even for honeycomb and triangular lattices with a sixfold rotational symmetry. Such anisotropic mechanical responses are essential for certain targeted applications of these synthetic materials. By introducing appropriate periodic boundary conditions that apply to large deformations, this work presents an efficient computational model of soft network materials based on the analyses of representative unit cells. This model is validated through comparison of predicted deformed configurations with full-scale finite element analyses (FEA) for different loading angles and loading strains. Based on this model, the anisotropic mechanical responses, including the nonlinear stress–strain curves and Poisson's ratios, are systematically analyzed for three representative lattice topologies (square, triangular and honeycomb). An analytic solution of the geometry-based critical strain was found to show a good correspondence to the critical transition point of the calculated J-shaped stress–strain curve for different network geometries and loading angles. Furthermore, the nonlinear Poisson's ratio, which can be either negative or positive, was shown to depend highly on both the loading angle and the loading strain.

References

1.
Ni Annaidh
,
A.
,
Bruyere
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
,
Maurini
,
C.
,
Ottenio
,
M.
, and
Saccomandi
,
G.
,
2012
, “
Automated Estimation of Collagen Fibre Dispersion in the Dermis and Its Contribution to the Anisotropic Behaviour of Skin
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1666
1678
.
2.
Fratzl
,
P.
,
Misof
,
K.
,
Zizak
,
I.
,
Rapp
,
G.
,
Amenitsch
,
H.
, and
Bernstorff
,
S.
,
1998
, “
Fibrillar Structure and Mechanical Properties of Collagen
,”
J. Struct. Biol.
,
122
(
1–2
), pp.
119
122
.
3.
Provenzano
,
P. P.
,
Heisey
,
D.
,
Hayashi
,
K.
,
Lakes
,
R.
, and
Vanderby
,
R.
, Jr.
,
2002
, “
Subfailure Damage in Ligament: A Structural and Cellular Evaluation
,”
J. Appl. Physiol.
,
92
(
1
), pp.
362
371
.
4.
Gao
,
H. J.
,
Ji
,
B. H.
,
Jager
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
10
), pp.
5597
5600
.
5.
Mayer
,
G.
,
2005
, “
Rigid Biological Systems as Models for Synthetic Composites
,”
Science
,
310
(
5751
), pp.
1144
1147
.
6.
Keten
,
S.
,
Xu
,
Z.
,
Ihle
,
B.
, and
Buehler
,
M. J.
,
2010
, “
Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Beta-Sheet Crystals in Silk
,”
Nat. Mater.
,
9
(
4
), pp.
359
367
.
7.
Komatsu
,
K.
,
2010
, “
Mechanical Strength and Viscoelastic Response of the Periodontal Ligament in Relation to Structure
,”
J. Dent. Biomech.
,
2010
, p.
502318
.
8.
Launey
,
M. E.
,
Buehler
,
M. J.
, and
Ritchie
,
R. O.
,
2010
, “
On the Mechanistic Origins of Toughness in Bone
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
25
53
.
9.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Buehler
,
M. J.
,
2011
, “
Hierarchical Structure and Nanomechanics of Collagen Microfibrils From the Atomistic Scale Up
,”
Nano Lett.
,
11
(
2
), pp.
757
766
.
10.
Cranford
,
S. W.
,
Tarakanova
,
A.
,
Pugno
,
N. M.
, and
Buehler
,
M. J.
,
2012
, “
Nonlinear Material Behaviour of Spider Silk Yields Robust Webs
,”
Nature
,
482
(
7383
), pp.
72
76
.
11.
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2008
, “
Materials Science. Bioinspired Structural Materials
,”
Science
,
319
(
5866
), pp.
1053
1054
.
12.
Munch
,
E.
,
Launey
,
M. E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2008
, “
Tough, Bio-Inspired Hybrid Materials
,”
Science
,
322
(
5907
), pp.
1516
1520
.
13.
Hong
,
Y.
,
Huber
,
A.
,
Takanari
,
K.
,
Amoroso
,
N. J.
,
Hashizume
,
R.
,
Badylak
,
S. F.
, and
Wagner
,
W. R.
,
2011
, “
Mechanical Properties and In Vivo Behavior of a Biodegradable Synthetic Polymer Microfiber-Extracellular Matrix Hydrogel Biohybrid Scaffold
,”
Biomaterials
,
32
(
13
), pp.
3387
3394
.
14.
Bouville
,
F.
,
Maire
,
E.
,
Meille
,
S.
,
Van de Moortele
,
B.
,
Stevenson
,
A. J.
, and
Deville
,
S.
,
2014
, “
Strong, Tough and Stiff Bioinspired Ceramics From Brittle Constituents
,”
Nat. Mater.
,
13
(
5
), pp.
508
514
.
15.
Naik
,
N.
,
Caves
,
J.
,
Chaikof
,
E. L.
, and
Allen
,
M. G.
,
2014
, “
Generation of Spatially Aligned Collagen Fiber Networks Through Microtransfer Molding
,”
Adv. Healthcare Mater.
,
3
(
3
), pp.
367
374
.
16.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
17.
Yang
,
W.
,
Sherman
,
V. R.
,
Gludovatz
,
B.
,
Schaible
,
E.
,
Stewart
,
P.
,
Ritchie
,
R. O.
, and
Meyers
,
M. A.
,
2015
, “
On the Tear Resistance of Skin
,”
Nat. Commun.
,
6
(
1
), p.
6649
.
18.
Kwansa
,
A. L.
,
Empson
,
Y. M.
,
Ekwueme
,
E. C.
,
Walters
,
V. I.
,
Freeman
,
J. W.
, and
Laurencin
,
C. T.
,
2010
, “
Novel Matrix Based Anterior Cruciate Ligament (ACL) Regeneration
,”
Soft Matter
,
6
(
20
), p.
5016
.
19.
Meyers
,
M. A.
,
McKittrick
,
J.
, and
Chen
,
P. Y.
,
2013
, “
Structural Biological Materials: Critical Mechanics-Materials Connections
,”
Science
,
339
(
6121
), pp.
773
779
.
20.
Safar
,
M. E.
,
Blacher
,
J.
,
Mourad
,
J. J.
, and
London
,
G. M.
,
2000
, “
Stiffness of Carotid Artery Wall Material and Blood Pressure in Humans: Application to Antihypertensive Therapy and Stroke Prevention
,”
Stroke
,
31
(
3
), pp.
782
790
.
21.
Ma
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Design and Application of ‘J-Shaped’ Stress-Strain Behavior in Stretchable Electronics: A Review
,”
Lab Chip
,
17
(
10
), pp.
1689
1704
.
22.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
23.
Kim
,
D. H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T. I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L.
,
Li
,
M.
,
Chung
,
H. J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y. W.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
24.
Xu
,
S.
,
Zhang
,
Y.
,
Jia
,
L.
,
Mathewson
,
K. E.
,
Jang
,
K. I.
,
Kim
,
J.
,
Fu
,
H.
,
Huang
,
X.
,
Chava
,
P.
,
Wang
,
R.
,
Bhole
,
S.
,
Wang
,
L.
,
Na
,
Y. J.
,
Guan
,
Y.
,
Flavin
,
M.
,
Han
,
Z.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2014
, “
Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin
,”
Science
,
344
(
6179
), pp.
70
74
.
25.
Zhang
,
Y.
,
Fu
,
H.
,
Xu
,
S.
,
Fan
,
J. A.
,
Hwang
,
K.-C.
,
Jiang
,
J.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2014
, “
A Hierarchical Computational Model for Stretchable Interconnects With Fractal-Inspired Designs
,”
J. Mech. Phys. Solids
,
72
, pp.
115
130
.
26.
Zhu
,
Y.
, and
Xu
,
F.
,
2012
, “
Buckling of Aligned Carbon Nanotubes as Stretchable Conductors: A New Manufacturing Strategy
,”
Adv. Mater.
,
24
(
8
), pp.
1073
1077
.
27.
Yao
,
S.
, and
Zhu
,
Y.
,
2014
, “
Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires
,”
Nanoscale
,
6
(
4
), pp.
2345
2352
.
28.
Jang
,
K. I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
,
Kim
,
G. T.
,
Han
,
S. Y.
,
Lee
,
J. W.
,
Kim
,
J.
,
Cho
,
M.
,
Miao
,
F.
,
Yang
,
Y.
,
Jung
,
H. N.
,
Flavin
,
M.
,
Liu
,
H.
,
Kong
,
G. W.
,
Yu
,
K. J.
,
Rhee
,
S. I.
,
Chung
,
J.
,
Kim
,
B.
,
Kwak
,
J. W.
,
Yun
,
M. H.
,
Kim
,
J. Y.
,
Song
,
Y. M.
,
Paik
,
U.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
, p.
6566
.
29.
Chen
,
P.
,
Xu
,
Y.
,
He
,
S.
,
Sun
,
X.
,
Pan
,
S.
,
Deng
,
J.
,
Chen
,
D.
, and
Peng
,
H.
,
2015
, “
Hierarchically Arranged Helical Fibre Actuators Driven by Solvents and Vapours
,”
Nat. Nanotechnol.
,
10
(
12
), pp.
1077
1083
.
30.
Khang
,
D. Y.
,
Jiang
,
H.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2006
, “
A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates
,”
Science
,
311
(
5758
), pp.
208
212
.
31.
Sun
,
Y.
,
Choi
,
W. M.
,
Jiang
,
H.
,
Huang
,
Y. Y.
, and
Rogers
,
J. A.
,
2006
, “
Controlled Buckling of Semiconductor Nanoribbons for Stretchable Electronics
,”
Nat. Nanotechnol.
,
1
(
3
), pp.
201
207
.
32.
Yu
,
C. J.
,
Masarapu
,
C.
,
Rong
,
J. P.
,
Wei
,
B. Q.
, and
Jiang
,
H. Q.
,
2009
, “
Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms
,”
Adv. Mater.
,
21
(
47
), pp.
4793
4797
.
33.
Gerbode
,
S. J.
,
Puzey
,
J. R.
,
McCormick
,
A. G.
, and
Mahadevan
,
L.
,
2012
, “
How the Cucumber Tendril Coils and Overwinds
,”
Science
,
337
(
6098
), pp.
1087
1091
.
34.
Song
,
Z.
,
Ma
,
T.
,
Tang
,
R.
,
Cheng
,
Q.
,
Wang
,
X.
,
Krishnaraju
,
D.
,
Panat
,
R.
,
Chan
,
C. K.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Origami Lithium-Ion Batteries
,”
Nat. Commun.
,
5
, p.
3140
.
35.
Shyu
,
T. C.
,
Damasceno
,
P. F.
,
Dodd
,
P. M.
,
Lamoureux
,
A.
,
Xu
,
L.
,
Shlian
,
M.
,
Shtein
,
M.
,
Glotzer
,
S. C.
, and
Kotov
,
N. A.
,
2015
, “
A Kirigami Approach to Engineering Elasticity in Nanocomposites Through Patterned Defects
,”
Nat. Mater.
,
14
(
8
), pp.
785
789
.
36.
Song
,
Z. M.
,
Wang
,
X.
,
Lv
,
C.
,
An
,
Y. H.
,
Liang
,
M. B.
,
Ma
,
T.
,
He
,
D.
,
Zheng
,
Y. J.
,
Huang
,
S. Q.
,
Yu
,
H. Y.
, and
Jiang
,
H. Q.
,
2015
, “
Kirigami-Based Stretchable Lithium-Ion Batteries
,”
Sci. Rep.
,
5
(
1
), p.
10988
.
37.
Zhang
,
Y. H.
,
Yan
,
Z.
,
Nan
,
K. W.
,
Xiao
,
D. Q.
,
Liu
,
Y. H.
,
Luan
,
H. W.
,
Fu
,
H. R.
,
Wang
,
X. Z.
,
Yang
,
Q. L.
,
Wang
,
J. C.
,
Ren
,
W.
,
Si
,
H. Z.
,
Liu
,
F.
,
Yang
,
L. H.
,
Li
,
H. J.
,
Wang
,
J. T.
,
Guo
,
X. L.
,
Luo
,
H. Y.
,
Wang
,
L.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
38
), pp.
11757
11764
.
38.
Maziz
,
A.
,
Concas
,
A.
,
Khaldi
,
A.
,
Stalhand
,
J.
,
Persson
,
N. K.
, and
Jager
,
E. W.
,
2017
, “
Knitting and Weaving Artificial Muscles
,”
Sci. Adv.
,
3
(
1
), p.
e1600327
.
39.
Chen
,
C.
,
Lu
,
T. J.
, and
Fleck
,
N. A.
,
1999
, “
Effect of Imperfections on the Yielding of Two-Dimensional Foams
,”
J. Mech. Phys. Solids
,
47
(
11
), pp.
2235
2272
.
40.
Lu
,
T. J.
, and
Chen
,
C.
,
1999
, “
Thermal Transport and Fire Retardance Properties of Cellular Aluminium Alloys
,”
Acta Mater.
,
47
(
5
), pp.
1469
1485
.
41.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.
42.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
.
43.
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
756
782
.
44.
Fleck
,
N. A.
, and
Qiu
,
X.
,
2007
, “
The Damage Tolerance of Elastic–Brittle, Two-Dimensional Isotropic Lattices
,”
J. Mech. Phys. Solids
,
55
(
3
), pp.
562
588
.
45.
Zhang
,
Y. H.
,
Qiu
,
X. M.
, and
Fang
,
D. N.
,
2008
, “
Mechanical Properties of Two Novel Planar Lattice Structures
,”
Int. J. Solids Struct.
,
45
(
13
), pp.
3751
3768
.
46.
Kang
,
S. H.
,
Shan
,
S.
,
Noorduin
,
W. L.
,
Khan
,
M.
,
Aizenberg
,
J.
, and
Bertoldi
,
K.
,
2013
, “
Buckling-Induced Reversible Symmetry Breaking and Amplification of Chirality Using Supported Cellular Structures
,”
Adv. Mater.
,
25
(
24
), pp.
3380
3385
.
47.
Kang
,
S. H.
,
Shan
,
S.
,
Kosmrlj
,
A.
,
Noorduin
,
W. L.
,
Shian
,
S.
,
Weaver
,
J. C.
,
Clarke
,
D. R.
, and
Bertoldi
,
K.
,
2014
, “
Complex Ordered Patterns in Mechanical Instability Induced Geometrically Frustrated Triangular Cellular Structures
,”
Phys. Rev. Lett.
,
112
(
9
), p.
098701
.
48.
Bertoldi
,
K.
,
2017
, “
Harnessing Instabilities to Design Tunable Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
51
61
.
49.
Li
,
T.
,
Hu
,
X.
,
Chen
,
Y.
, and
Wang
,
L.
,
2017
, “
Harnessing out-of-Plane Deformation to Design 3D Architected Lattice Metamaterials With Tunable Poisson's Ratio
,”
Sci. Rep.
,
7
(
1
), p.
8949
.
50.
Chen
,
Y.
,
Jia
,
Z.
, and
Wang
,
L.
,
2016
, “
Hierarchical Honeycomb Lattice Metamaterials With Improved Thermal Resistance and Mechanical Properties
,”
Compos. Struct.
,
152
, pp.
395
402
.
51.
Kim
,
D. H.
,
Song
,
J.
,
Choi
,
W. M.
,
Kim
,
H. S.
,
Kim
,
R. H.
,
Liu
,
Z.
,
Huang
,
Y. Y.
,
Hwang
,
K. C.
,
Zhang
,
Y. W.
, and
Rogers
,
J. A.
,
2008
, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations
,”
Proc. Natl. Acad. Sci. U S A
,
105
(
48
), pp.
18675
18680
.
52.
Widlund
,
T.
,
Yang
,
S.
,
Hsu
,
Y.-Y.
, and
Lu
,
N.
,
2014
, “
Stretchability and Compliance of Freestanding Serpentine-Shaped Ribbons
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4026
4037
.
53.
Zhang
,
Y.
,
Xu
,
S.
,
Fu
,
H.
,
Lee
,
J.
,
Su
,
J.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2013
, “
Buckling in Serpentine Microstructures and Applications in Elastomer-Supported Ultra-Stretchable Electronics With High Areal Coverage
,”
Soft Matter
,
9
(
33
), pp.
8062
8070
.
54.
Yang
,
S. X.
,
Chen
,
Y. C.
,
Nicolini
,
L.
,
Pasupathy
,
P.
,
Sacks
,
J.
,
Su
,
B.
,
Yang
,
R.
,
Sanchez
,
D.
,
Chang
,
Y. F.
,
Wang
,
P. L.
,
Schnyer
,
D.
,
Neikirk
,
D.
, and
Lu
,
N. S.
,
2015
, “‘
Cut-and-Paste’ Manufacture of Multiparametric Epidermal Sensor Systems
,”
Adv. Mater.
,
27
(
41
), pp.
6423
6430
.
55.
Yang
,
S. X.
,
Su
,
B.
,
Bitar
,
G.
, and
Lu
,
N. S.
,
2014
, “
Stretchability of Indium Tin Oxide (ITO) Serpentine Thin Films Supported by Kapton Substrates
,”
Int. J. Fract.
,
190
(
1–2
), pp.
99
110
.
56.
Huang
,
Y. A.
,
Dong
,
W. T.
,
Huang
,
T.
,
Wang
,
Y. Z.
,
Xiao
,
L.
,
Su
,
Y. W.
, and
Yin
,
Z. P.
,
2015
, “
Self-Similar Design for Stretchable Wireless LC Strain Sensors
,”
Sens. Actuators A
,
224
, pp.
36
42
.
57.
Huang
,
Y. A.
,
Wang
,
Y. Z.
,
Xiao
,
L.
,
Liu
,
H. M.
,
Dong
,
W. T.
, and
Yin
,
Z. P.
,
2014
, “
Microfluidic Serpentine Antennas With Designed Mechanical Tunability
,”
Lab Chip
,
14
(
21
), pp.
4205
4212
.
58.
Arslan
,
M.
, and
Boyce
,
M. C.
,
2006
, “
Constitutive Modeling of the Finite Deformation Behavior of Membranes Possessing a Triangulated Network Microstructure
,”
ASME J. Appl. Mech.
,
73
(
4
), pp.
536
543
.
59.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
60.
Ma
,
Q.
,
Cheng
,
H.
,
Jang
,
K. I.
,
Luan
,
H.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2016
, “
A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids
,
90
, pp.
179
202
.
61.
Li
,
H.
,
Ma
,
Y.
,
Wen
,
W.
,
Wu
,
W.
,
Lei
,
H.
, and
Fang
,
D.
,
2017
, “
In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081006
.
62.
Kothari
,
K.
,
Hu
,
Y.
,
Gupta
,
S.
, and
Elbanna
,
A.
,
2018
, “
Mechanical Response of Two-Dimensional Polymer Networks: Role of Topology, Rate Dependence, and Damage Accumulation
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031008
.
63.
Onck
,
P. R.
,
Andrews
,
E. W.
, and
Gibson
,
L. J.
,
2001
, “
Size Effects in Ductile Cellular Solids. Part I: Modeling
,”
Int. J. Mech. Sci.
,
43
(
3
), pp.
681
699
.
64.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson's Ratios
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051003
.
65.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
Soft Network Materials With Isotropic Negative Poisson's Ratios Over Large Strains
,”
Soft Matter
,
14
(
5
), pp.
693
703
.
You do not currently have access to this content.