Abstract

We perform numerical experiments using the finite element method (FEM) to investigate the effect of defect–defect interactions on the pressure-induced buckling of thin, elastic, spherical shells containing two dimpled imperfections. Throughout, we quantify the critical buckling pressure of these shells using their knockdown factor. We examine cases featuring either identical or different geometric defects and systematically explore the parameter space, including the angular separation between the defects, their widths and amplitudes, and the radius-to-thickness ratio of the shell. As the angular separation between the defects is increased, the buckling strength initially decreases, then increases before reaching a plateau. Our primary finding is that the onset of defect–defect interactions, as quantified by a characteristic length scale associated with the onset of the plateau, is set by the critical buckling wavelength reported in the classic shell-buckling literature. Beyond this threshold, within the plateau regime, we demonstrate that the largest defect dictates the shell buckling.

References

1.
Von Karman
,
T.
, and
Tsien
,
H.-S.
,
1939
, “
The Buckling of Spherical Shells by External Pressure
,”
J. Aeronaut. Sci.
,
7
(
2
), pp.
43
50
.
2.
Von Karman
,
T.
,
Dunn
,
L. G.
, and
Tsien
,
H.-S.
,
1940
, “
The Influence of Curvature on the Buckling Characteristics of Structures
,”
J. Aeronaut. Sci.
,
7
(
7
), pp.
276
289
.
3.
Hutchinson
,
J.
, and
Koiter
,
W.
,
1970
, “
Postbuckling Theory
,”
ASME Appl. Mech. Rev.
,
23
(
12
), pp.
1353
1366
.
4.
Lidmar
,
J.
,
Mirny
,
L.
, and
Nelson
,
D. R.
,
2003
, “
Virus Shapes and Buckling Transitions in Spherical Shells
,”
Phys. Rev. E
,
68
(
5
), p.
051910
.
5.
Datta
,
S. S.
,
Kim
,
S. -H.
,
Paulose
,
J.
,
Abbaspourrad
,
A.
,
Nelson
,
D. R.
, and
Weitz
,
D. A.
,
2012
, “
Delayed Buckling and Guided Folding of Inhomogeneous Capsules
,”
Phys. Rev. Lett.
,
109
(
13
), p.
134302
.
6.
Godoy
,
L. A.
,
2016
, “
Buckling of Vertical Oil Storage Steel Tanks: Review of Static Buckling Studies
,”
Thin-Walled Struct.
,
103
, pp.
1
21
.
7.
Zoelly
,
R.
,
1915
, “
Ueber ein knickungsproblem an der kugelschale
,” PhD thesis, ETH Zürich, Zürich, Switzerland.
8.
Tsien
,
H.-S.
,
1942
, “
A Theory for the Buckling of Thin Shells
,”
J. Aeronaut. Sci.
,
9
(
10
), pp.
373
384
.
9.
Koiter
,
W. T.
,
1945
, “
Over de stabiliteit van het elastisch evenwicht
,” PhD thesis, Delft University of Technology, Delft, The Netherlands.
10.
Kaplan
,
A.
, and
Fung
,
Y. C.
,
1954
, “
A Nonlinear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells
,” Technical Note 3212, National Advisory Committee for Aeronautics, Washington, DC.
11.
Bijlaard
,
P.
, and
Gallagher
,
R.
,
1960
, “
Elastic Instability of a Cylindrical Shell Under Arbitrary Circumferential Variation of Axial Stress
,”
J. Aerosp. Sci.
,
27
(
11
), pp.
854
858
.
12.
Seide
,
P.
,
Weingarten
,
V. I.
, and
Morgan
,
E. J.
,
1960
, “
The Development of Design Criteria for Elastic Stability of Thin Shell Structures
,” Tech. report, Final Report: STL/TR-60-0000-19425, Space Technology Laboratories, Inc., Los Angeles, CA.
13.
Krenzke
,
M. A.
, and
Kiernan
,
T. J.
,
1963
, “
Elastic Stability of Near-perfect Shallow Spherical Shells
,”
AIAA J.
,
1
(
12
), pp.
2855
2857
.
14.
Carlson
,
R. L.
,
Sendelbeck
,
R. L.
, and
Hoff
,
N. J.
,
1967
, “
Experimental Studies of the Buckling of Complete Spherical Shells
,”
Exp. Mech.
,
7
(
7
), pp.
281
288
.
15.
Kobayashi
,
S.
,
1968
, “
The Influence of the Boundary Conditions on the Buckling Load of Cylindrical Shells Under Axial Compression
,”
J. Jpn. Soc. Aeronaut. Eng.
,
16
(
170
), pp.
74
82
.
16.
Hutchinson
,
J. W.
,
Muggeridge
,
D. B.
, and
Tennyson
,
R. C.
,
1971
, “
Effect of a Local Axisymmetric Imperfection on the Buckling Behaviorof a Circular Cylindrical Shell Under Axial Compression
,”
AIAA J.
,
9
(
1
), pp.
48
52
.
17.
Budiansky
,
B.
, and
Hutchinson
,
J.
,
1972
, “Buckling of Circular Cylindrical Shells Under Axial Compression,”
Contributions to the Theory of Aircraft Structures
,
Delft University Press
,
Delft, The Netherlands
, pp.
239
259
.
18.
Babcock
,
C. D.
,
1983
, “
Shell Stability
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
935
940
.
19.
Gerasimidis
,
S.
,
Hutchinson
,
J.
,
Sieber
,
J.
, and
Thompson
,
J.
,
2023
, “
Foreword to the Special Issue on New Developments in Structural Stability
,”
Philos. Trans. R. Soc. A
,
381
(
2244
), p.
20220038
.
20.
Hutchinson
,
J. W.
,
2016
, “
Buckling of Spherical Shells Revisited
,”
Proc. Roy. Soc. A-Math. Phys.
,
472
(
2195
), p.
20160577
.
21.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2017
, “
Nonlinear Buckling Behaviour of Spherical Shells: Barriers and Symmetry-Breaking Dimples
,”
Proc. Roy. Soc. A-Math. Phys.
,
375
(
2093
), p.
20160154
.
22.
Thompson
,
J. M. T.
,
Hutchinson
,
J. W.
, and
Sieber
,
J.
,
2017
, “
Probing Shells Against Buckling: a Nondestructive Technique for Laboratory Testing
,”
Int. J. Bif. Chaos
,
27
(
14
), p.
1730048
.
23.
Virot
,
E.
,
Kreilos
,
T.
,
Schneider
,
T. M.
, and
Rubinstein
,
S. M.
,
2017
, “
Stability Landscape of Shell Buckling
,”
Phys. Rev. Lett.
,
119
(
22
), p.
224101
.
24.
López Jiménez
,
F.
,
Marthelot
,
J.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Technical Brief: Knockdown Factor for the Buckling of Spherical Shells Containing Large-Amplitude Geometric Defects
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
034501
.
25.
Gerasimidis
,
S.
,
Virot
,
E.
,
Hutchinson
,
J. W.
, and
Rubinstein
,
S. M.
,
2018
, “
On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091010
.
26.
Marthelot
,
J.
,
López Jiménez
,
F.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Buckling of a Pressurized Hemispherical Shell Subjected to a Probing Force
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121005
.
27.
Lee
,
A.
,
Yan
,
D.
,
Pezzulla
,
M.
,
Holmes
,
D. P.
, and
Reis
,
P. M.
,
2019
, “
Evolution of Critical Buckling Conditions in Imperfect Bilayer Shells Through Residual Swelling
,”
Soft. Matter.
,
15
(
30
), pp.
6134
6144
.
28.
Yan
,
D.
,
Pezzulla
,
M.
, and
Reis
,
P. M.
,
2020
, “
Buckling of Pressurized Spherical Shells Containing a Through-Thickness Defect
,”
J. Mech. Phys. Solids
,
138
, p.
103923
.
29.
Yadav
,
K. K.
,
Cuccia
,
N. L.
,
Virot
,
E.
,
Rubinstein
,
S. M.
, and
Gerasimidis
,
S.
,
2021
, “
A Nondestructive Technique for the Evaluation of Thin Cylindrical Shells’ Axial Buckling Capacity
,”
ASME J. Appl. Mech.
,
88
(
5
), p. 051003.
30.
Abbasi
,
A.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2021
, “
Probing the Buckling of Pressurized Spherical Shells
,”
J. Mech. Phys. Solids
,
155
, p.
104545
.
31.
Yan
,
D.
,
Pezzulla
,
M.
,
Cruveiller
,
L.
,
Abbasi
,
A.
, and
Reis
,
P. M.
,
2021
, “
Magneto-active Elastic Shells With Tunable Buckling Strength
,”
Nat. Commun.
,
12
(
1
), p.
2831
.
32.
Pezzulla
,
M.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2022
, “
A Geometrically Exact Model for Thin Magneto-elastic Shells
,”
J. Mech. Phys. Solids
,
166
, p.
104916
.
33.
Abbasi
,
A.
,
Derveni
,
F.
, and
Reis
,
P.
,
2023
, “
Comparing the Buckling Strength of Spherical Shells With Dimpled Versus Bumpy Defects
,”
ASME J. Appl. Mech.
,
90
(
6
), p.
061008
.
34.
Lee
,
A.
,
Brun
,
P.-T.
,
Marthelot
,
J.
,
Balestra
,
G.
,
Gallaire
,
F.
, and
Reis
,
P.
,
2016
, “
Fabrication of Slender Elastic Shells by the Coating of Curved Surfaces
,”
Nat. Commun.
,
7
(
1
), p.
11155
.
35.
Lee
,
A.
,
López Jiménez
,
F.
,
Marthelot
,
J.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111005
.
36.
Derveni
,
F.
,
Gueissaz
,
W.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2023
, “
Probabilistic Buckling of Imperfect Hemispherical Shells Containing a Distribution of Defects
,”
Philos. Trans. R. Soc. A
,
381
(
2244
), p.
20220298
.
37.
Fisher
,
R. A.
, and
Tippett
,
L. H. C.
,
1928
, “
Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample
,”
Mathematical Proceedings of the Cambridge Philosophical Society
,
Cambridge University Press
, Vol. 24, pp.
180
190
.
38.
Weibull
,
W.
,
1939
, “
The Phenomenon of Rupture in Solids
,”
IVA Handlingar
,
153
, pp.
1
55
.
39.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
(3), pp.
293
297
.
40.
Jayatilaka
,
A. D. S.
, and
Trustrum
,
K.
,
1977
, “
Statistical Approach to Brittle Fracture
,”
J. Mater. Sci.
,
12
(
7
), pp.
1426
1430
.
41.
Bažant
,
Z. P.
,
Le
,
J. -L.
, and
Bazant
,
M. Z.
,
2009
, “
Scaling of Strength and Lifetime Probability Distributions of Quasibrittle Structures Based on Atomistic Fracture Mechanics
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
28
), pp.
11484
11489
.
42.
Le
,
J.-L.
,
Ballarini
,
R.
, and
Zhu
,
Z.
,
2015
, “
Modeling of Probabilistic Failure of Polycrystalline Silicon Mems Structures
,”
J. Am. Ceram
,
98
(
6
), pp.
1685
1697
.
43.
Hutchinson
,
J.
,
1965
, “
Buckling of Imperfect Cylindrical Shells Under Axial Compression Andexternal Pressure.
,”
AIAA. J.
,
3
(
10
), pp.
1968
1970
.
44.
Kyriakides
,
S.
, and
Ju
,
G.
,
1992
, “
Bifurcation and Localization Instabilities in Cylindrical Shells Under Bending–I. Experiments
,”
Int. J. Solids Struct.
,
29
(
9
), pp.
1117
1142
.
45.
Groh
,
R.
, and
Pirrera
,
A.
,
2023
, “
Probing the Stability Landscape of Cylindrical Shells for Buckling Knockdown Factors
,”
Philos. Trans. R. Soc. A
,
381
(
2244
), p.
20220032
.
46.
Amazigo
,
J. C.
,
1969
, “
Buckling Under Axial Compression of Long Cylindrical Shells With Random Axisymmetric Imperfections
,”
Q. Appl. Math.
,
26
(
4
), pp.
537
566
.
47.
Elishakoff
,
I.
, and
Arbocz
,
J.
,
1982
, “
Reliability of Axially Compressed Cylindrical Shells With Random Axisymmetric Imperfections
,”
Int. J. Solids Struct.
,
18
(
7
), pp.
563
585
.
48.
Elishakoff
,
I.
, and
Arbocz
,
J.
,
1985
, “
Reliability of Axially Compressed Cylindrical Shells With General Nonsymmetric Imperfections
,”
ASME J. Appl. Mech.
,
52
(1), pp.
122
128
.
49.
Elishakoff
,
I.
,
2012
, “
Probabilistic Resolution of the Twentieth Century Conundrum in Elastic Stability
,”
Thin-Walled Struct.
,
59
(
6
), pp.
35
57
.
50.
Wullschleger
,
L.
,
2006
, “
Numerical Investigation of the Buckling Behaviour of Axially Compressed Circular Cylinders Having Parametric Initial Dimple Imperfections
,” PhD thesis, ETH Zurich.
51.
Fan
,
H.
,
2019
, “
Critical Buckling Load Prediction of Axially Compressed Cylindrical Shell Based on Non-destructive Probing Method
,”
Thin-Walled Struct.
,
139
, pp.
91
104
.
52.
Hutchinson
,
J. W.
,
1967
, “
Imperfection Sensitivity of Externally Pressurized Spherical Shells
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
49
55
.
53.
Koga
,
T.
, and
Hoff
,
N. J.
,
1969
, “
The Axisymmetric Buckling of Initially Imperfect Complete Spherical Shells
,”
Int. J. Solids Struct.
,
5
(
7
), pp.
679
697
.
54.
Gerasimidis
,
S.
, and
Hutchinson
,
J. W.
,
2021
, “
Dent Imperfections in Shell Buckling: The Role of Geometry, Residual Stress, and Plasticity
,”
ASME J. Appl. Mech.
,
88
(
3
), p. 031007.
55.
ABAQUS
,
2014
, “
Abaqus Theory Guide
”. Version 6.14. Dassault Systems Simulia Corp, USA.
56.
Feller
,
W.
,
1968
,
An Introduction to Probability Theory and Its Applications
, Vol.
81
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
174
182
.
You do not currently have access to this content.