Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., 1991, “Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc.

[CrossRef], 138 (8), pp. 2334–2342.

Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., 1991, “Modeling Water Content Effects in Polymer Electrolyte Fuel Cells,” "*Modelling of Batteries and Fuel Cells*", The Electrochemical Society Softbound Proceedings Series , R.E.White, M.W.Verbrugge, and J.F.Stockel, eds., The Electrochemical Society, Pennington, NJ, Vol. 91–10 , pp. 209–223.

Springer, T. E., and Gottesfeld, S., 1991, “Pseudohomogeneous Catalyst Layer Model for Polymer Electrolyte Fuel Cell,” "*Proceedings of the Symposium on Modeling of Batteries and Fuel Cells*", The Electrochemical Society, Vol. 91–10 , pp. 197–208.

Nguyen, T. V., and White, R. E., 1993, “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,” J. Electrochem. Soc.

[CrossRef], 140 (8), pp. 2178–2186.

Gurav, V., Liu, H., and Kakac, S., 1998, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AIChE J.

[CrossRef], 44 (11), pp. 2410–2422.

Yi, J. S., and Nguyen, T. V., 1999, “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochem. Soc.

[CrossRef], 146 (1), pp. 38–45.

Nam, J. H., and Kaviany, M., 2003, “Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium,” Int. J. Heat Mass Transfer

[CrossRef], 46 , pp. 4595–4611.

Berning, T., and Djilali, N., 2003, “A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell,” J. Electrochem. Soc.

[CrossRef], 150 (12), pp. A1589–A1598.

Pasaogullari, U., and Wang, C. Y., 2004, “Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells,” Electrochim. Acta

[CrossRef], 49 , pp. 4359–4369.

Siegel, N. P., Ellis, M. W., Nelson, D. J., and Spakovsky, M. R., 2004, “A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport,” J. Power Sources

[CrossRef], 128 , pp. 173–184.

Chen, K. S., Hickner, M. A., and Noble, D. R., 2005, “Simplified Models for Predicting the Onset of Liquid Water Droplet Instability at the Gas Diffusion Layer/Gas Flow Channel Interface,” Int. J. Heat Mass Transfer, 29 , pp. 1113–1132.

Shah, A., Kim, G.-S., Gervais, W., Young, A., Promislow, K., Li, J., and Ye, S., 2006, “The Effects of Water and Microstructure on the Performance of Polymer Electrolyte Fuel Cells,” J. Power Sources

[CrossRef], 160 (2), pp. 1251–1268.

Helmig, R., 1997, "*Multiphase Flow and Transport in the Subsurface*", Springer-Verlag, Berlin.

Hornung, U., 1997, "*Homogenization and Porous Media*", Interdisciplinary Applied Mathematics Vol. 6 , Springer, New York.

Brooks, R. J., and Corey, A. T., 1964, “Hydraulic Properties of Porous Media,” Hydrology Paper 3, Colorado State University, Fort Collins.

Schulz, V., Mukherjee, P., Becker, J., Wiegmann, A., and Wang, C.-Y., 2007, “Modelling of Two-Phase Behaviour in the Gas Diffusion Medium of Polymer Electrolyte Fuel Cells Via Full Morphology Approach,” J. Electrochem. Soc.

[CrossRef], 154 , pp. 419–426.

Ewing, R., 1995, “Multiphase Flows in Porous Media,” "*Advanced Mathematics: Computations and Applications*", pp. 49–63.

van Genuchten, M. T., 1980, “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,” Soil Sci. Soc. Am. J., 44 , pp. 892–898.

Nguyen, T., 1999, “Modeling of Two-Phase Flow in the Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Flow Fields,” "*Tutorials in Electrochemical Engineering Mathematical Modeling*", The Electrochemical Society Proceedings , Vol. 99–14 , pp. 222–241.

Sonntag, D., 1994, “Advancements in the Field of Hygrometry,” Meteorol. Zelischrift, 3 , pp. 51–66.

Atkins, P. W., 2001, "*Physikalische Chemie*", 3rd ed., Wiley-VCH, Weinheim.

Hamann, C. H., and Vielstich, W., 1998, "*Elektrochemie*", 3rd ed., Wiley-VCH, Weinheim.

Larminie, J., and Dicks, A., 2000, "*Fuel Cell Systems Explained*", Wiley, Baffins Lane, Chichester.

Woodside, W., and Messmer, J., 1961, “Thermal Conductivity of Porous Media. I. Unconsolidated Sands,” J. Appl. Phys.

[CrossRef], 32 , pp. 1688–1706.

Weber, A. Z., and Newman, J., 2003, “Transport in Polymer-Electrolyte Membranes. I. Physical Model,” J. Electrochem. Soc.

[CrossRef], 150 (7), pp. A1008–A1015.

Weber, A. Z., and Newman, J., 2004, “Transport in Polymer-Electrolyte Membranes. II. Mathematical Model,” J. Electrochem. Soc.

[CrossRef], 151 (2), pp. A311–A325.

Thampan, T., Malhotra, S., Tang, H., and Datta, R., 2000, “Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells,” J. Electrochem. Soc.

[CrossRef], 147 (9), pp. 3242–3250.

Jaeger, W., and Mikelic, A., 2000, “On the Boundary Conditions at the Contact Interface Between Two Porous Media,” "*Partial Differential Equations: Theory and Numerical Solution*", Vol. 406 , pp. 175–186.

Damjanovic, A., and Brusic, V., 1967, “Electrode Kinetics of Oxygen Reduction on Oxide-Free Platinum Electrodes,” Electrochim. Acta

[CrossRef], 12 , pp. 615–628.

Chen, Z., Ewing, R., and M. S., E., 1994, “Multiphase Flow Simulation With Various Boundary Conditions,” "*Computational Methods in Water Resources*", Kluwer Academic, Netherlands, pp. 925–932.

Ohlberger, M., 1997, “Convergence of a Mixed Finite Element—Finite Volume Method for the Two Phase Flow in Porous Media,” East-West J. Numer. Math., 5 , pp. 183–210.

Ohlberger, M., 1999, “Adaptive Mesh Refinement for Single and Two Phase Flow Problems in Porous Media,” "*Proceedings of the Second International Symposium on Finite Volumes for Complex Applications: Problems and Perspectives*", Duisburg, Hermes Science, Paris, pp. 761–768.

Bürkle, D., and Ohlberger, M., 2002, “Adaptive Finite Volume Methods for Displacement Problems in Porous Media,” Comput. Visualization Sci.

[CrossRef], 5 (2), pp. 95–106.

Herbin, R., and Ohlberger, M., 2002, “A Posteriori Error Estimate for Finite Volume Approximations of Convection Diffusion Problems,” "*Proceedings of the Third International Symposium on Finite Volumes for Complex Applications: Problems and Perspectives*", Porquerolles, Hermes Science, Paris, pp. 753–760.

Ohlberger, M., and Rohde, C., 2002, “Adaptive Finite Volume Approximations for Weakly Coupled Convection Dominated Parabolic Systems,” IMA J. Numer. Anal.

[CrossRef], 22 (2), pp. 253–280.

Klöfkorn, R., Kröner, D., and Ohlberger, M., 2002, “Local Adaptive Methods for Convection Dominated Problems,” Int. J. Numer. Methods Fluids

[CrossRef], 40 (1-2), pp. 79–91.

Ohlberger, M., 2004, “Higher Order Finite Volume Methods on Self-Adaptive Grids for Convection Dominated Reactive Transport Problems in Porous Media,” Comput. Visualization Sci., 7 (1), pp. 41–51.

Gerthsen, C., and Vogel, H., 1999, "*Gerthsen Physik*", Springer, Berlin.

Parthasarathy, A., and Martin, C. R., 1991, “Investigation of the O2 Reduction Reaction at the Platinum/Nafion Interface Using a Solid-State Electrochemical Cell,” J. Electrochem. Soc.

[CrossRef], 138 (4), pp. 916–921.

Wöhr, M., Bolwin, K., Schnurnberger, W., Fischer, M., Neubrand, W., and Eigenberger, G., 1998, “Dynamic Modelling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation,” Int. J. Hydrogen Energy

[CrossRef], 23 (3), pp. 213–218.