Research Papers

Dopant Clustering and Correlated Oxygen Migration in Conditionally Stabilized Zirconia Electrolytes

[+] Author and Article Information
Steven P. Miller

Naval Ship Systems Engineering Station,
5001 South Broad Street,
Philadelphia, PA 19112
e-mail: steven.p.miller3@navy.mil

Brett I. Dunlap

Naval Research Laboratory,
4555 Overlook Avenue SW,
Washington, DC 20375
e-mail: brett.dunlap@nrl.navy.mil

Amy S. Fleischer

Department of Mechanical Engineering,
Villanova University,
800 Lancaster Avenue,
Villanova, PA 19085
e-mail: amy.fleischer@villanova.edu

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY. Manuscript received August 8, 2014; final manuscript received October 30, 2014; published online December 17, 2014. Editor: Nigel M. Sammes.

J. Fuel Cell Sci. Technol 12(2), 021003 (Apr 01, 2015) (6 pages) Paper No: FC-14-1097; doi: 10.1115/1.4029082 History: Received August 08, 2014; Revised October 30, 2014; Online December 17, 2014

Molecular dynamics (MD) simulation of yttria/scandia-stabilized zirconia (SSZ) with variably distributed Y/Sc dopant ions shows that energy is minimized when the dopants are uniformly spread apart, provided that the lattice maintains cubic fluorite symmetry. In contrast, highly clustered dopants are found to destabilize the cubic phase due to the presence of large regions of dopant-free zirconia. Computed oxygen diffusion coefficients and conductivity values consistently show that the Haven ratio is always less than one, indicating that correlation effects influence the motion of oxygen ions and vacancies. In addition, it is seen that the conductivity of crystals with noncubic symmetry is markedly anisotropic.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Stefanovich, E. V., Shluger, A. L., and Catlow, C. R. A., 1994, “Theoretical Study of the Stabilization of Cubic-Phase ZrO2 by Impurities,” Phys. Rev. B, 49(17), pp. 11560–11571. [CrossRef]
Yamamoto, O., Arachi, Y., Sakai, H., Takeda, Y., Imanishi, N., Mizutani, Y., Kawai, M., and Nakamura, Y., 1998, “Zirconia Based Oxide Ion Conductors for Solid Oxide Fuel Cells,” Ionics, 4(5–6), pp. 403–408. [CrossRef]
Badwal, S. P. S., Ciacchi, F. T., and Milosevic, D., 2000, “Scandia-Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation,” Solid State Ion., 136–137, pp. 91–99. [CrossRef]
Badwal, S. P. S., 1983, “Electrical Conductivity of Sc2O3-ZrO2 Compositions by 4-Probe d.c. and 2-Probe Complex Impedance Techniques,” J. Mater. Sci., 18(10), pp. 3117–3127. [CrossRef]
Badwal, S. P. S., 1987, “Effect of Dopant Concentration on Electrical Conductivity in the Sc2O3-ZrO2 System,” J. Mater. Sci., 22(11), pp. 4125–4132 [CrossRef]
Ciacchi, F. T., Badwal, S. P. S., and Drennan, J., 1991, “The System Y2O3-Sc2O3-ZrO2: Phase Characterisation by XRD, TEM and Optical Microscopy,” J. Eur. Ceram. Soc., 7(3), pp. 185–195. [CrossRef]
Badwal, S. P. S., 1992 “Zirconia-Based Solid Electrolytes: Microstructure, Stability and Ionic Conductivity,” Solid State Ion., 52(1–3), pp. 23–32. [CrossRef]
Badwal, S. P. S., and Drennan, J., 1992, “Microstructure/Conductivity Relationship in the Scandia–Zirconia System,” Solid State Ion., 53–56(2), pp. 769–776. [CrossRef]
Badwal, S. P. S., Ciacchi, F. T., Rajendran, S., and Drennan, J., 1998, “An Investigation of Conductivity, Microstructure and Stability of Electrolyte Compositions in the System 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3),” Solid State Ion., 109(3), pp. 167–186. [CrossRef]
Fujimora, H., Yashima, M., Kakihana, M., and Yoshimura, M., 2002, “β-Cubic Phase Transition of Scandia-Doped Zirconia Solid Solution: Calorimetry, X-Ray Diffraction, and Raman Scattering,” J. Appl. Phys., 91(10), pp. 6493–6498 [CrossRef]
Haering, C., Roosen, A., and Schichl, H., 2005, “Degradation of the Electrical Conductivity in Stabilised Zirconia Systems: Part I: Yttria-Stabilised Zirconia,” Solid State Ion., 176(3–4), pp. 253–259. [CrossRef]
Haering, C., Roosen, A., Schichl, H., and Schnöller, M., 2005, “Degradation of the Electrical Conductivity in Stabilised Zirconia System: Part II: Scandia-Stabilised Zirconia,” Solid State Ion., 176(3–4), pp. 261–268. [CrossRef]
Araki, W., Koshikawa, T., Yamaji, A., and Adachi, T., 2009, “Degradation Mechanism of Scandia-Stabilised Zirconia Electrolytes: Discussion Based on Annealing Effects on Mechanical Strength, Ionic Conductivity, and Raman Spectrum,” Solid State Ion., 180(28–31), pp. 1484–1489. [CrossRef]
Stafford, R. J., Rothman, S. J., and Routbort, J. L., 1989, “Effect of Dopant Size on the Ionic Conductivity of Cubic Stabilised ZrO2,” Solid State Ion., 37(1), pp. 67–72. [CrossRef]
Taylor, M. A., Argirusis, C., Kilo, M., Borchardt, G., Luther, K.-D., and Assmus, W., 2004, “Correlation Between Ionic Radius and Cation Diffusion in Stabilised Zirconia,” Solid State Ion., 173(1–4), pp. 51–56. [CrossRef]
Lybye, D., and Mogensen, M., 2006, “Effect of Transition Metal Ions on the Conductivity and Stability of Stabilised Zirconia,” Advances in Solid Oxide Fuel Cells II, a collection of papers presented at the 30th International Conference on Advanced Ceramics and Composites, Cocoa Beach, FL, Jan. 22–27, pp. 67–78.
Marrocchelli, D., Madden, P. A., Norberg, S. T., and Hull, S., 2009, “Cation Composition Effects on Oxide Conductivity in the Zr2Y2O7-Y2NbO7 System,” J. Phys.: Condens. Matter, 21(40), p. 405403. [CrossRef] [PubMed]
Marrocchelli, D., Madden, P. A., Norberg, S. T., and Hull, S., 2011, “Structural Disorder in Doped Zirconias, Part II: Vacancy Ordering Effects and the Conductivity Maximum,” Chem. Mater., 23(6), pp. 1365–1373. [CrossRef]
Politova, T. I., and Irvine, J. T. S., 2004, “Investigation of Scandia-Yttria-Zirconia System as an Electrolyte Material for Intermediate Temperature Fuel Cells-Influence of Yttria Content in System (Y2O3)x(Sc2O3)11-x(ZrO2)89,” Solid State Ion., 168(1–2), pp. 153–165. [CrossRef]
Kilo, M., Argirusis, C., Borchardt, G., and Jackson, R. A., 2003, “Oxygen Diffusion in Yttria Stabilised Zirconia—Experimental Results and Molecular Dynamics Calculations,” Phys. Chem. Chem. Phys., 5(11), pp. 2219–2224. [CrossRef]
Dwivedi, A., and Cormack, A. N., 1990, “A Computer Simulation Study of the Defect Structure of Calcia-Stabilized Zirconia,” Philos. Mag. A, 61(1), pp. 1–22. [CrossRef]
Shimojo, F., Okabe, T., Tachibana, F., Kobayashi, M., and Okazaki, H., 1992, “Molecular Dynamics Studies of Yttria Stabilized Zirconia. I. Structure and Oxygen Diffusion,” J. Phys. Soc. Jpn., 61(8), pp. 2848–2857. [CrossRef]
Shimojo, F., and Okazaki, H., 1992, “Molecular Dynamics Studies of Yttria Stabilized Zirconia. II. Microscopic Mechanism of Oxygen Diffusion,” J. Phys. Soc. Jpn., 61(11), pp. 4106–4118. [CrossRef]
Krishnamurthy, R., Srolovitz, D. J., Kudin, K. N., and Car, R., 2005, “Effects of Lanthanide Dopants on Oxygen Diffusion in Yttria-Stabilized Zirconia,” J. Am. Ceram. Soc., 88(8), pp. 2143–2151. [CrossRef]
Zhang, Q., and Chan, K.-Y., 2007, “Alternate Current Nonequilibrium Molecular Dynamics Simulations of Yttria-Stabilized Zirconia,” J. Phys. Chem. C, 111(43), pp. 15832–15838. [CrossRef]
van Duin, A. C. T., Merinov, B. V., Jang, S. S., and Goddard, III, W. A., 2008, “ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems With Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia,” J. Phys. Chem. A, 112(14), pp. 3133–3140. [CrossRef]
Chang, K.-S., and Tung, K.-L., 2009, “Oxygen-Ion Transport in a Dual-Phase Scandia-Yttria-Stabilized Zirconia Solid Electrolyte: A Molecular Dynamics Simulation,” Chem. Phys. Chem., 10(11), pp. 1887–1894. [CrossRef]
Einstein, A., 1905, “On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat,” Ann. Phys., 17, pp. 549–560. [CrossRef]
Murch, G. E., 1982, “The Haven Ratio in Fast Ionic Conductors,” Solid State Ion., 7(3), pp. 177–198. [CrossRef]
Lau, K. C., and Dunlap, B. I., 2011, “Molecular Dynamics Simulation of Yttria-Stabilized Zirconia (YSZ) Crystalline and Amorphous Solids,” J. Phys.: Condens. Matter, 23(3), p. 035401. [CrossRef] [PubMed]
Tang, Y. W., Zhang, Q., and Chan, K.-Y., 2004, “Non-Equilibrium Molecular Dynamics Simulation of Oxygen Ion Mobility in Yttria Stabilized Zirconia,” Chem. Phys. Lett., 385(3–4), pp. 202–207. [CrossRef]
Miller, S. P., Dunlap, B. I., and Fleischer, A. S., 2013, “Effects of Dopant Clustering in Cubic Zirconia Stabilized by Yttria and Scandia From Molecular Dynamics,” Solid State Ion., 253, pp. 130–136. [CrossRef]
Shinoda, W., Shiga, M., and Mikami, M., 2004, “Rapid Estimation of Elastic Constants by Molecular Dynamics Simulation Under Constant Stress,” Phys. Rev. B, 69, p. 134103. [CrossRef]
Deserno, M., and Holm, C., 1998, “How to Mesh Up Ewald Sums. I. A Theoretical and Numerical Comparison of Various Particle Mesh Routines,” J. Chem. Phys., 109(18), pp. 7678–7693. [CrossRef]
Minervini, L., Grimes, R. W., and Sickafus, K. E., 2000, “Disorder in Pyrochlore Oxides,” J. Am. Ceram. Soc. 83(8), pp. 1873–1878. [CrossRef]
Miller, S. P., Dunlap, B. I., and Fleischer, A. S., “Cation Coordination and Interstitial Oxygen Occupancy in Co-Doped Zirconia From First Principles,” Solid State Ion., 227, pp. 66–72. [CrossRef]
Delugas, P., Fiorentini, V., and Filippetti, A., 2009, “Dielectric and Vibrational Properties of Bixbyite Sesquioxides,” Phys. Rev. B, 80, p. 104301. [CrossRef]
Lau, K. C., and Dunlap, B. I., 2009, “Lattice Dielectric and Thermodynamic Properties of Yttria Stabilized Zirconia Solids,” J. Phys.: Condens. Matter, 21(14), p. 145402. [CrossRef] [PubMed]
Xu, Y.-N., Gu, Z.-Q., and Ching, W. Y., 1997, “Electronic, Structural, and Optical Properties of Crystalline Yttria,” Phys. Rev. B, 56(23), pp. 14993–15000. [CrossRef]
Raj, E. S., Atkinson, A., and Kilner, J. A., 2009, “Oxygen Diffusion Studies on (Y2O3)2(Sc2O3)9(ZrO2)89,” Solid State Ion., 180(14–16), pp. 952–955. [CrossRef]


Grahic Jump Location
Fig. 1

Supercell images of annealed (left) and randomized (right) specimens of MSZ-2/9. Despite the differences in dopant and vacancy arrangements, both specimens maintain the Fm3m lattice arrangement of cubic zirconia. However, there is greater ordering of dopants in the annealed specimen, which can be observed in the patterns of the smaller light and dark cations, representing scandium and yttrium ions, respectively.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In