Research Papers

Composite Nanofiber Membrane for Lithium-Ion Batteries Prepared by Electrostatic Spun/Spray Deposition

[+] Author and Article Information
Bin Yu

School of Textile,
Tianjin Polytechnic University,
Tianjin 300387, China
e-mail: zijieyb@163.com

Xiao-Ming Zhao

School of Textile,
Tianjin Polytechnic University,
Tianjin 300387, China
e-mail: zhaoxiaoming@tjpu.edu.cn

Xiao-Ning Jiao

School of Textile,
Tianjin Polytechnic University,
Tianjin 300387, China
e-mail: xiaoningj@tjpu.edu.cn

Dong-Yue Qi

Guangzhou Fibre Product Testing
and Research Institute,
Guangzhou 511447, China
e-mail: qidongyue0403@163.com

1Corresponding author.

Manuscript received October 27, 2015; final manuscript received June 22, 2016; published online July 19, 2016. Assoc. Editor: Peter Pintauro.

J. Electrochem. En. Conv. Stor. 13(1), 011008 (Jul 19, 2016) (6 pages) Paper No: JEECS-15-1002; doi: 10.1115/1.4034030 History: Received October 27, 2015; Revised June 22, 2016

A new kind of sandwiched composite membrane (SCM) for lithium-ion batteries is prepared by depositing zirconia microparticle between two layers of electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofibers by electrostatic spray deposition. The thermal shrinkage, electrochemical properties of the separator, and cycle performance for batteries with the SCM were investigated. The results show that the SCM has a high electrolyte uptake and easily absorbs electrolyte to form gelled polymer electrolytes (GPEs). The SCM GPEs have a high ionic conductivity of up to 2.06 × 10−3 S cm−1 at room temperature and show a high electrochemical stability potential of 5.4 V. With LiCoCO2 as cathode, the cell with SCM GPEs exhibits a high initial discharge capacity of 149.7 mAh g−1.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Nunes-Pereira, J. , Lopes, A. C. , Costa, C. M. , Rodrigues, L. C. , Silva, M. M. , and Lanceros-Méndez, S. , 2013, “ Microporous Membranes of NaY Zeolite/Poly(Vinylidene Fluoride–Trifluoroethylene) for Li-Ion Battery Separators,” J. Electroanal. Chem., 689(15), pp. 223–232. [CrossRef]
Ulaganathan, M. , Mathew, C. M. , and Rajendran, S. , 2013, “ Highly Porous Lithium-Ion Conducting Solvent-Free Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)/Poly(Ethyl Methacrylate) Based Polymer Blend Electrolytes for Li Battery Applications,” Electrochim. Acta, 93(30), pp. 230–235. [CrossRef]
Li, H. , Chen, Y. , Ma, X. , Shi, J. , Zhu, B. , and Zhu, L. , 2011, “ Gel Polymer Electrolytes Based on Active PVDF Separator for Lithium Ion Battery. I: Preparation and Property of PVDF/Poly(Dimethylsiloxane) Blending Membrane,” J. Membr. Sci., 379(1–2), pp. 397–402. [CrossRef]
Raghavan, P. , Manuel, J. , Zhao, X. , Kim, D. , Ahn, J. , and Nah, C. , 2011, “ Preparation and Electrochemical Characterization of Gel Polymer Electrolyte Based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries,” J. Power Sources, 196(16), pp. 6742–6749. [CrossRef]
Fisher, A. S. , Khalid, M. B. , Widstrom, M. , and Kofinas, P. , 2011, “ Solid Polymer Electrolytes With Sulfur Based Ionic Liquid for Lithium Batteries,” J. Power Sources, 196(22), pp. 9767–9773. [CrossRef]
Bansal, D. , Meyer, B. , and Salomon, M. , 2008, “ Gelled Membranes for Li and Li-Ion Batteries Prepared by Electrospinning,” J. Power Sources, 178(2), pp. 848–851. [CrossRef]
Cho, T. , Tanaka, M. , Ohnishi, H. , Kondo, Y. , Yoshikazu, M. , Nakamura, T. , and Sakai, T. , 2010, “ Composite Nonwoven Separator for Lithium-Ion Battery: Development and Characterization,” J. Power Sources, 195(13), pp. 4272–4277. [CrossRef]
Raghavan, P. , Zhao, X. , Manuel, J. , Chauhan, G. S. , Ahn, J. , Ryu, H. , Ahn, H. , Kim, K. , and Nah, C. , 2010, “ Electrochemical Performance of Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Nanocomposite Polymer Electrolytes Incorporating Ceramic Fillers and Room Temperature Ionic Liquid,” Electrochim. Acta, 55(4), pp. 1347–1354. [CrossRef]
Ding, Y. , Zhang, P. , Long, Z. , Jiang, Y. , Xu, F. , and Di, W. , 2009, “ The Ionic Conductivity and Mechanical Property of Electrospun P(VdF-HFP)/PMMA Membranes for Lithium Ion Batteries,” J. Membr. Sci., 329(1–2), pp. 56–59. [CrossRef]
Li, Z. H. , Zhang, H. P. , Zhang, P. , Li, G. C. , Wu, Y. P. , and Zhou, X. D. , 2008, “ Effects of the Porous Structure on Conductivity of Nanocomposite Polymer Electrolyte for Lithium Ion Batteries,” J. Membr. Sci., 322(2), pp. 416–422. [CrossRef]
Gopalan, A. I. , Santhosh, P. , Manesh, K. M. , Nho, J. H. , Kim, S. H. , Hwang, C. , and Lee, K. , 2008, “ Development of Electrospun PVdF–PAN Membrane-Based Polymer Electrolytes for Lithium Batteries,” J. Membr. Sci., 325(2), pp. 683–690. [CrossRef]
Li, X. , Cheruvally, G. , Kim, J. , Choi, J. , Ahn, J. , Kim, K. , and Ahn, H. , 2007, “ Polymer Electrolytes Based on an Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Membrane for Lithium Batteries,” J. Power Sources, 167(2), pp. 491–498. [CrossRef]
Gopalan, A. I. , Lee, K. , Manesh, K. M. , and Santhosh, P. , 2008, “ Poly(Vinylidene Fluoride)–Polydiphenylamine Composite Electrospun Membrane as High-Performance Polymer Electrolyte for Lithium Batteries,” J. Membr. Sci., 318(1–2), pp. 422–428. [CrossRef]
Xi, J. , Qiu, X. , Li, J. , Tang, X. , Zhu, W. , and Chen, L. , 2006, “ PVDF–PEO Blends Based Microporous Polymer Electrolyte: Effect of PEO on Pore Configurations and Ionic Conductivity,” J. Power Sources, 157(1), pp. 501–506. [CrossRef]
Lee, Y. , Jeong, Y. B. , and Kim, D. , 2010, “ Cycling Performance of Lithium-Ion Batteries Assembled With a Hybrid Composite Membrane Prepared by an Electrospinning Method,” J. Power Sources, 195(18), pp. 6197–6201. [CrossRef]
Zhang, H. P. , Zhang, P. , Li, Z. H. , Sun, M. , Wu, Y. P. , and Wu, H. Q. , 2007, “ A Novel Sandwiched Membrane as Polymer Electrolyte for Lithium Ion Battery,” Electrochem. Commun., 9(7), pp. 1700–1703. [CrossRef]
Shin, W. , Lee, Y. , and Kim, D. , 2013, “ Hybrid Composite Membranes Based on Polyethylene Separator and Al2O3 Nanoparticles for Lithium-Ion Batteries,” J. Nanosci. Nanotechnol., 13(5), pp. 3705–3710. [CrossRef] [PubMed]
Kim, J. , Cheruvally, G. , Li, X. , Ahn, J. , Kim, K. , and Ahn, H. , 2008, “ Preparation and Electrochemical Characterization of Electrospun, Microporous Membrane-Based Composite Polymer Electrolytes for Lithium Batteries,” J. Power Sources, 178(2), pp. 815–820. [CrossRef]
Raghavan, P. , Zhao, X. , Kim, J. , Manuel, J. , Chauhan, G. S. , Ahn, J. , and Nah, C. , 2008, “ Ionic Conductivity and Electrochemical Properties of Nanocomposite Polymer Electrolytes Based on Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) With Nano-Sized Ceramic Fillers,” Electrochim. Acta, 54(2), pp. 228–234. [CrossRef]
Raghavan, P. , Choi, J. , Ahn, J. , Cheruvally, G. , Chauhan, G. S. , Ahn, H. , and Nah, C. , 2008, “ Novel Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)–In Situ SiO2 Composite Membrane-Based Polymer Electrolyte for Lithium Batteries,” J. Power Sources, 184(2), pp. 437–443. [CrossRef]
Huang, X. , 2013, “ Cellular Porous Polyvinylidene Fluoride Composite Membranes for Lithium-Ion Batteries,” J. Solid State Electrochem., 17(3), pp. 591–597. [CrossRef]
Kim, J. , Niedzicki, L. , Scheers, J. , Shin, C. , Lim, D. , Wieczorek, W. , Johansson, P. , Ahn, J. , Matic, A. , and Jacobsson, P. , 2013, “ Characterization of N-Butyl-N-Methyl-Pyrrolidinium Bis(Trifluoromethanesulfonyl)Imide-Based Polymer Electrolytes for High Safety Lithium Batteries,” J. Power Sources, 224(15), pp. 93–98. [CrossRef]
Liao, C. , Sun, X. , and Dai, S. , 2013, “ Crosslinked Gel Polymer Electrolytes Based on Polyethylene Glycol Methacrylate and Ionic Liquid for Lithium Ion Battery Applications,” Electrochim. Acta, 87(1), pp. 889–894. [CrossRef]
Gao, K. , Hu, X. , Dai, C. , and Yi, T. , 2006, “ Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cells,” Mater. Sci. Eng.: B, 131(1–3), pp. 100–105. [CrossRef]
Lee, S. W. , Choi, S. W. , Jo, S. M. , Chin, B. D. , Kim, D. Y. , and Lee, K. Y. , 2006, “ Electrochemical Properties and Cycle Performance of Electrospun Poly(Vinylidene Fluoride)-Based Fibrous Membrane Electrolytes for Li-Ion Polymer Battery,” J. Power Sources, 163(1), pp. 41–46. [CrossRef]
Liao, Y. , Sun, C. , Hu, S. , and Li, W. , 2013, “ Anti-Thermal Shrinkage Nanoparticles/Polymer and Ionic Liquid Based Gel Polymer Electrolyte for Lithium Ion Battery,” Electrochim. Acta, 89(1), pp. 461–468. [CrossRef]
Jiang, W. , Liu, Z. , Kong, Q. , Yao, J. , Zhang, C. , Han, P. , and Cui, G. , 2013, “ A High Temperature Operating Nanofibrous Polyimide Separator in Li-Ion Battery,” Solid State Ionics, 232(7), pp. 44–48. [CrossRef]
Plaimer, M. , Breitfuß, C. , Sinz, W. , Heindl, S. F. , Ellersdorfer, C. , Steffan, H. , Wilkening, M. , Hennige, V. , Tatschl, R. , Geier, A. , Schramm, C. , and Freunberger, S. A. , 2016, “ Evaluating the Trade-Off Between Mechanical and Electrochemical Performance of Separators for Lithium-Ion Batteries: Methodology and Application,” J. Power Sources, 306(29), pp. 702–710. [CrossRef]
Xiao, Q. , Li, Z. , Gao, D. , and Zhang, H. , 2009, “ A Novel Sandwiched Membrane as Polymer Electrolyte for Application in Lithium-Ion Battery,” J. Membr. Sci., 326(2), pp. 260–264. [CrossRef]
Lee, J. Y. , Lee, Y. M. , Bhattacharya, B. , Nho, Y. , and Park, J. , 2009, “ Separator Grafted With Siloxane by Electron Beam Irradiation for Lithium Secondary Batteries,” Electrochim. Acta, 54(18), pp. 4312–4315. [CrossRef]
Magistris, A. , Quartarone, E. , Mustarelli, P. , Saito, Y. , and Kataoka, H. , 2002, “ PVDF-Based Porous Polymer Electrolytes for Lithium Batteries,” Solid State Ionics, 152, pp. 347–354. [CrossRef]
Deka, M. , and Kumar, A. , 2011, “ Electrical and Electrochemical Studies of Poly(Vinylidene Fluoride)–Clay Nanocomposite Gel Polymer Electrolytes for Li-Ion Batteries,” J. Power Sources, 196(3), pp. 1358–1364. [CrossRef]
Subramania, A. , Sundaram, N. T. K. , Priya, A. R. S. , and Kumar, G. V. , 2007, “ Preparation of a Novel Composite Micro-Porous Polymer Electrolyte Membrane for High Performance Li-Ion Battery,” J. Membr. Sci., 294(1–2), pp. 8–15. [CrossRef]


Grahic Jump Location
Fig. 1

Preparation of the SCM

Grahic Jump Location
Fig. 2

The SEM photographs of the composite membrane: (a) cross section, (b) outer layer, and (c) inner layer

Grahic Jump Location
Fig. 3

The photograph of the membranes before and after thermal treatment

Grahic Jump Location
Fig. 4

Stress–strain curves of the PHM, SCM, and Celgard 2400

Grahic Jump Location
Fig. 5

Electrochemical impedance spectra of the SCM and PHM GPEs

Grahic Jump Location
Fig. 6

Temperature-dependent ionic conductivity of the SCM and PHM GPEs

Grahic Jump Location
Fig. 7

The electrochemical stability of SCM and PHM GPEs

Grahic Jump Location
Fig. 8

Initial charge–discharge curves for the cells tested

Grahic Jump Location
Fig. 9

Cycle performance for the cells tested



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In