Research Papers

Enhancing the Cycling Stability of Tin Sulfide Anodes for Lithium Ion Battery by Titanium Oxide Atomic Layer Deposition

[+] Author and Article Information
Dongsheng Guan

Department of Mechanical Engineering,
University of Wisconsin Milwaukee,
Milwaukee, WI 53211
e-mail: guand@uwm.edu

Chris Yuan

Department of Mechanical Engineering,
University of Wisconsin Milwaukee,
Milwaukee, WI 53211
e-mail: cyuan@uwm.edu

1Corresponding author.

Manuscript received June 22, 2016; final manuscript received September 20, 2016; published online October 11, 2016. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 13(2), 021004 (Oct 11, 2016) (5 pages) Paper No: JEECS-16-1086; doi: 10.1115/1.4034809 History: Received June 22, 2016; Revised September 20, 2016

The poor cyclability problem of SnS2 anodes in Li-ion batteries (LIB) is tackled for the first time by surface coatings with TiO2 via atomic layer deposition (ALD). ALD is capable to achieve uniform, conformal nanoscale coatings onto entire SnS2 electrodes, and enhance their cycling stability and rate performance. From our study, we found that the bare electrode delivers capacities eventually down to 219.2 mA h g−1 over 50 cycles, while the ALD TiO2-coated gains a final capacity of 323.7 mA h g−1 (47.7% higher). Electrochemical impedance analyses reveal that the improvement is ascribed to the smaller charge transfer resistance and formation of thinner solid–electrolyte interfaces (SEI) in the coated electrode, thanks to its better structural integrity and less electrolyte decomposition in the presence of protective coatings.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Jana, M. K. , Rajendra, H. B. , Bhattacharyya, A. J. , and Biswas, K. , 2014, “ Green Ionothermal Synthesis of Hierarchical Nanostructures of SnS2 and Their Li-Ion Storage Properties,” CrystEngComm, 16(19), pp. 3994–4000. [CrossRef]
Guan, D. , Li, J. , Gao, X. , and Yuan, C. , 2015, “ Carbon Nanotube-Assisted Growth of Single-/Multilayer SnS2 and SnO2 Nanoflakes for High-Performance Lithium Storage,” RSC Adv., 5(72), pp. 58514–58521. [CrossRef]
Chaki, S. H. , Deshpande, M. P. , Trivedi, D. P. , Tailor, J. P. , Chaudhary, M. D. , and Kanchan, M. , 2013, “ Wet Chemical Synthesis and Characterization of SnS2 Nanoparticles,” Appl. Nanosci., 3(3), pp. 189–195. [CrossRef]
Huang, Y. , Ling, C. , Chen, X. , Zhou, D. , and Wang, S. , 2015, “ SnS2 Nanotubes: A Promising Candidate for the Anode Material for Lithium Ion Batteries,” RSC Adv., 5(41), pp. 32505–32510. [CrossRef]
Du, Y. , Yin, Z. , Rui, X. , Zeng, Z. , Wu, X. , Liu, J. , Zhu, Y. , Zhu, J. , Huang, X. , Yan, Q. , and Zhang, H. , 2013, “ A Facile, Relative Green and Inexpensive Synthetic Approach Toward Large-Scale Production of SnS2 Nanoplates for High-Performance Lithium-Ion Batteries,” Nanoscale, 5(4), pp. 1456–1459. [CrossRef] [PubMed]
Guan, D. , Li, J. , Gao, X. , Xie, Y. , and Yuan, C. , 2016, “ Growth Characteristics and Influencing Factors of 3D Hierarchical Flower-Like SnS2 Nanostructures and Their Superior Lithium-Ion Intercalation Performance,” J. Alloys. Compd., 658, pp. 190–197. [CrossRef]
Luo, B. , Fang, Y. , Wang, B. , Zhou, J. , Song, H. , and Zhi, L. , 2012, “ Two Dimensional Graphene–SnS2 Hybrids With Superior Rate Capability for Lithium Ion Storage,” Energy Environ. Sci., 5(1), pp. 5226–5230. [CrossRef]
Zhang, Z. , Shao, C. , Li, X. , Sun, Y. , Zhang, M. , Mu, J. , Zhang, P. , Guo, Z. , and Liu, Y. , 2013, “ Hierarchical Assembly of Ultrathin Hexagonal SnS2 Nanosheets Onto Electrospun TiO2 Nanofibers: Enhanced Photocatalytic Activity Based on Photoinduced Interfacial Charge Transfer,” Nanoscale, 5(2), pp. 606–618. [CrossRef] [PubMed]
Kim, H. S. , Chung, Y. H. , Kang, S. H. , and Sung, Y. E. , 2009, “ Electrochemical Behavior of Carbon-Coated SnS2 for Use as the Anode in Lithium-Ion Batteries,” Electrochim. Acta, 54(13), pp. 3606–3610. [CrossRef]
Wang, G. , Peng, J. , Zhang, L. , Zhang, J. , Dai, B. , Zhu, M. , Xia, L. , and Yu, F. , 2015, “ Two-Dimensional SnS2@PANI Nanoplates With High Capacity and Excellent Stability for Lithium-Ion Batteries,” J. Mater. Chem. A, 3(7), pp. 3659–3666. [CrossRef]
George, S. M. , 2010, “ Atomic Layer Deposition: An Overview,” Chem. Rev., 110(1), pp. 111–131. [CrossRef] [PubMed]
Zhang, L. , Prosser, J. H. , Feng, G. , and Lee, D. , 2012, “ Mechanical Properties of Atomic Layer Deposition-Reinforced Nanoparticle Thin Films,” Nanoscale, 4(20), pp. 6543–6552. [CrossRef] [PubMed]
Liu, J. , and Sun, X. , 2015, “ Elegant Design of Electrode and Electrode/Electrolyte Interface in Lithium-Ion Batteries by Atomic Layer Deposition,” Nanotechnology, 26(2), p. 024001. [CrossRef] [PubMed]
Lotfabad, E. M. , Kalisvaart, P. , Cui, K. , Kohandehghan, A. , Kupsta, M. , Olsen, B. , and Mitlin, D. , 2013, “ ALD TiO2 Coated Silicon Nanowires for Lithium Ion Battery Anodes With Enhanced Cycling Stability and Coulombic Efficiency,” Phys. Chem. Chem. Phys., 15(32), pp. 13646–13657. [CrossRef] [PubMed]
Han, X. , Liu, Y. , Jia, Z. , Chen, Y. , Wan, J. , Weadock, N. , Gaskell, K. J. , Li, T. , and Hu, L. , 2014, “ Atomic-Layer-Deposition Oxide Nanoglue for Sodium Ion Batteries,” Nano Lett., 14(1), pp. 139–147. [CrossRef] [PubMed]
Ahmed, B. , Shahid, M. , Nagaraju, D. H. , Anjum, D. H. , Hedhili, M. N. , and Alshareef, H. N. , 2015, “ Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes,” ACS Appl. Mater. Interfaces, 7(24), pp. 13154–13163. [CrossRef] [PubMed]
Yesibolati, N. , Shahid, M. , Chen, W. , Hedhili, M. N. , Reuter, M. C. , Ross, F. M. , and Alshareef, H. N. , 2014, “ SnO2 Anode Surface Passivation by Atomic Layer Deposited HfO2 Improves Li-Ion Battery Performance,” Small, 10(14), pp. 2849–2858. [CrossRef] [PubMed]
Luan, X. , Guan, D. , and Wang, Y. , 2012, “ Enhancing High-Rate and Elevated-Temperature Performances of Nano-Sized and Micron-Sized LiMn2O4 in Lithium-Ion Batteries With Ultrathin Surface Coatings,” J. Nanosci. Nanotech., 12(9), pp. 7113–7120. [CrossRef]
Abendroth, B. , Moebus, T. , Rentrop, S. , Strohmeyer, R. , Vinnichenko, M. , Weling, T. , Stöcker, H. , and Meyer, D. C. , 2013, “ Atomic Layer Deposition of TiO2 From Tetrakis(Dimethylamino) Titanium and H2O,” Thin Solid Films, 545, pp. 176–182. [CrossRef]
Katamreddy, R. , Omarjee, V. , Feist, B. , and Dussarrat, C. , 2008, “ Ti Source Precursors for Atomic Layer Deposition of TiO2, STO and BST,” ECS Transactions, 16(4), pp. 113–122.
Tao, Q. , Kueltzo, A. , Singh, M. , Jursich, G. , and Takoudisa, C. G. , 2011, “ Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O,” J. Electrochem. Soc., 158(2), pp. G27–G33. [CrossRef]
Jung, Y. S. , Cavanagh, A. S. , Riley, L. A. , Kang, S. H. , Dillon, A. C. , Groner, M. D. , George, S. M. , and Lee, S. H. , 2010, “ Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries,” Adv. Mater., 22(19), pp. 2172–2176. [CrossRef] [PubMed]
Orsini, F. , Dollé, M. , and Tarascon, J.-M. , 2000, “ Impedance Study of the Li/Electrolyte Interface Upon Cycling,” Solid State Ionics, 135(1–4), pp. 213–221. [CrossRef]
Thevenin, J. G. , and Muller, R. H. , 1987, “ Impedance of Lithium Electrodes in a Propylene Carbonate Electrolyte,” J. Electrochem. Soc., 134(2), pp. 273–280. [CrossRef]
Peled, E. , Golodnitsky, D. , Ardel, G. , and Eshkenazy, V. , 1995, “ The SEI Model-Application to Lithium-Polymer Electrolyte Batteries,” Electrochim. Acta, 40(13–14), pp. 2197–2204. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic of the first TiO2 ALD layer formed on the SnS2 electrode and more ALD cycles to achieve the growth of TiO2 ALD coating with a targeted thickness

Grahic Jump Location
Fig. 2

SEM images of SnS2 nanoparticles and their flake-like aggregates. The inset image shows the flake feature with a scale bar of 100 nm.

Grahic Jump Location
Fig. 3

Characterization of SnS2 powder: (a) EDS spectrum and (b) XRD pattern

Grahic Jump Location
Fig. 4

(a) SEM image and elemental mapping images of a SnS2 aggregate coated with TiO2 via 120 ALD cycles: (b) Sn, (c) Ti, (d) O, and (e) TEM image of such a coated SnS2 aggregate

Grahic Jump Location
Fig. 5

Elemental analysis of SS-120TiO electrode: (a) SEM image showing the region for EDS analysis, (b) EDS spectrum and (c, d) elemental mapping images of Ti and O; (e, f) Ti 2p and O 1s XPS peaks, and (g) full XPS spectrum

Grahic Jump Location
Fig. 6

(a) Cross-sectional SEM image of SS-120TiO electrode with numbers denoting regions where elements were quantified by EDS, and (b) weight ratios of Ti/Sn as a function of the depth profile (regions 1–5)

Grahic Jump Location
Fig. 7

Specific capacities of (a) bare and TiO2-coated SnS2 anodes measured at 100 mA g−1 and (b) at 100–1000 mA g−1, (c, d) charge–discharge profiles in various cycles at 100 mA g−1 of the bare and SS-80TiO electrodes, their (e) cyclic voltammetry and (f) impedance profiles after 30 (hollow symbols) and 50 (solid symbols) battery cycles

Grahic Jump Location
Fig. 8

EDS elemental spectra of SS-80TiO electrode after 50 battery cycles



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In