Research Papers

Doping Effect of Alkaline Earth Metal on Oxygen Reduction Reaction in Praseodymium Nickelate With Layered Perovskite Structure

[+] Author and Article Information
Lai Wei

Key Laboratory of Functional
Inorganic Material Chemistry,
Ministry of Education,
School of Chemistry and Materials Science,
Heilongjiang University,
Harbin 150080, China
e-mail: 791415049@qq.com

Li-Ping Sun

Key Laboratory of Functional
Inorganic Material Chemistry,
Ministry of Education,
School of Chemistry and Materials Science,
Heilongjiang University,
Harbin 150080, China
e-mail: lipingsun98@yahoo.com

Qiang Li

Key Laboratory of Functional
Inorganic Material Chemistry,
Ministry of Education,
School of Chemistry and Materials Science,
Heilongjiang University,
Harbin 150080, China
e-mail: lq1211@sina.com

Li-Hua Huo

Key Laboratory of Functional
Inorganic Material Chemistry,
Ministry of Education,
School of Chemistry and Materials Science,
Heilongjiang University,
Harbin 150080, China
e-mail: lhhuo68@yahoo.com

Hui Zhao

Key Laboratory of Functional
Inorganic Material Chemistry,
Ministry of Education,
School of Chemistry and Materials Science,
Heilongjiang University,
Harbin 150080, China
e-mail: zhaohui98@yahoo.com

1Corresponding author.

Manuscript received June 10, 2016; final manuscript received January 9, 2017; published online February 1, 2017. Assoc. Editor: San Ping Jiang.

J. Electrochem. En. Conv. Stor. 13(4), 041003 (Feb 01, 2017) (7 pages) Paper No: JEECS-16-1076; doi: 10.1115/1.4035731 History: Received June 10, 2016; Revised January 09, 2017

Pr1.9A0.1NiO4 (A = Ca, Sr, Ba) are synthesized and characterized by X-ray powder diffraction (XRD), infrared spectrum (IR), and X-ray photoelectron spectroscopy (XPS). The effects of alkaline earth doping on the covalence of Pr–O and Ni–O bond, the mean valence of Ni, and the hydroxide absorption ability of material surface are studied. It is found that the covalence of Pr–O and Ni–O bond increases with the decrease of alkaline earth element radius. Meanwhile, the mean valence of Ni and the surface hydroxide absorption ability are enhanced. The electrochemical measurement results indicate that the O22 /OH replacement reaction is facilitated by the increase of mean valence of Ni in the material. The best oxygen reduction reaction (ORR) activity is found in Pr1.9Ca0.1NiO4. The current density of 2.16 mA cm−2 is obtained at a potential of −0.6 V (versus Hg/HgO). The tafel slope is 66.48 mV decade−1, close to Pt/C material.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Armand, M. , and Tarascon, J. M. , 2008, “ Building Better Batteries,” Nature, 451(7179), pp. 652–657. [CrossRef] [PubMed]
Neburchilov, V. , Wang, H. , Martin, J. J. , and Qu, W. , 2010, “ A Review on Air Cathodes for Zinc–Air Fuel Cells,” J. Power Sources, 195(5), pp. 1271–1291. [CrossRef]
Cheng, F. , and Chen, J. , 2012, “ ChemInform Abstract: Metal–Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts,” Chem. Soc. Rev., 41(6), pp. 2172–2192. [CrossRef] [PubMed]
Greeley, J. , Stephens, I. E. L. , Bondarenko, A. S. , Johansson, T. P. , Hansen, H. A. , Jaramillo, T. F. , Rossmeisl, J. , Chorkendorff, I. , and Nørskov, J. K. , 2009, “ Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts,” Nat. Chem., 1(7), pp. 552–556. [CrossRef] [PubMed]
Yuan, C. , Wu, H. B. , Xie, Y. , and Lou, X. W. , 2014, “ Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications,” Angew. Chem. Int. Ed., 53(6), pp. 1488–1504. [CrossRef]
Jung, K. N. , Jung, J. H. , Im, W. B. , Yoon, S. , Shin, K. H. , and Lee, J. W. , 2013, “ Doped Lanthanum Nickelates With a Layered Perovskite Structure as Bifunctional Cathode Catalysts for Rechargeable Metal–Air Batteries,” ACS Appl. Mater. Interfaces, 5(20), pp. 9902–9907. [CrossRef] [PubMed]
Troncoso, L. , Alonso, J. A. , and Aguadero, A. , 2015, “ Low Activation Energies for Interstitial Oxygen Conduction in the Layered Perovskites La1+xSr1−xInO4+δ,” J. Mater. Chem. A., 3(1), pp. 17797–17803. [CrossRef]
Villesuzanne, A. , Paulus, W. , Cousson, A. , Hosoya, S. , Dréau, L. L. , Hernandez, O. , Prestipino, C. , and Houchati, M. I. , 2011, “ On the Role of Lattice Dynamics on Low-Temperature Oxygen Mobility in Solid Oxides: A Neutron Diffraction and First-Principles Investigation of La2CuO4-δ,” J. Solid State Electrochem., 15(2), pp. 357–366. [CrossRef]
Perrichon, A. , Piovano, A. , Boehm, M. , Zbiri, M. , Johnson, M. , Schober, H. , Ceretti, M. , and Paulus, W. , 2015, “ Lattice Dynamics Modified by Excess Oxygen in Nd2NiO4+δ: Triggering Low-Temperature Oxygen Diffusion,” J. Phys. Chem. C., 119(3), pp. 1557–1564. [CrossRef]
Boehma, E. , Bassata, J.-M. , Dordora, P. , Mauvya, F. , Greniera, J.-C. , and Stevens, P. , 2005, “ Oxygen Diffusion and Transport Properties in Non-Stoichiometric Ln2−xNiO4+δ Oxides,” Solid State Ionics, 176(37), pp. 2717–2725. [CrossRef]
Zhou, X. D. , Templeton, J. W. , Nie, Z. , Chen, H. , Stevenson, J. W. , and Pederson, L. R. , 2012, “ Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: V. High Performance and Stable Pr2NiO4 as the Cathode for Solid Oxide Fuel Cells,” Electrochim. Acta, 71(3), pp. 44–49. [CrossRef]
Ferchaud, C. , Grenier, J. C. , Ye, Z. S. , Tuel, M. M. A. V. , Berkel, F. P. F. V. , and Bassat, J. M. , 2011, “ High Performance Praseodymium Nickelate Oxide Cathode for Low Temperature Solid Oxide Fuel Cell,” J. Power Sour., 196(4), pp. 1872–1879. [CrossRef]
Grimaud, A. , Mauvy, F. , Bassat, J. M. , Fourcade, S. , Marrony, M. , and Grenier, J. C. , 2012, “ Hydration and Transport Properties of the Pr2-xSrxNiO4+δ Compounds as H+-SOFC Cathodes,” J. Mater. Chem., 22(31), pp. 16017–16025. [CrossRef]
Railsback, J. G. , Gao, Z. , and Barnett, S. A. , 2015, “ Oxygen Electrode Characteristics of Pr2NiO4+δ-Infiltrated Porous (La0.9Sr0.1)(Ga0.8Mg0.2)O3–δ,” Solid State Ionics, 274, pp. 134–139. [CrossRef]
Flura, A. , Nicollet, C. , Fourcade, S. , Vibhu, V. , Rougier, A. , Bassat, J. M. , and Grenier, J. C. , 2015, “ Identification and Modelling of the Oxygen Gas Diffusion Impedance in SOFC Porous Electrodes: Application to Pr2NiO4+δ,” Electrochimica. Acta, 174(1), pp. 1030–1040. [CrossRef]
Suntivich, J. , Gasteiger, H. A. , Yabuuchi, N. , and Yang, S. H. , 2010, “ Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode,” J. Electrochem. Soc., 157(8), pp. B1263–B1268. [CrossRef]
Chung, Y. K. , Kwon, Y. U. , and Byeon, S. H. , 1995, “ Synthesis, Structural and Electrical Characterizations of Pr2-xBaxNiO4±δ,” Bull. Korean Chem. Soc., 16(2), pp. 120–125.
Singh, K. K. , Ganguly, P. , and Goodenough, J. B. , 1984, “ Unusual Effects of Anisotropic Bonding in Cu(II) and Ni(II) Oxides With K2NiF4 Structure,” J. Solid State Chem., 52(3), pp. 254–273. [CrossRef]
Odier, P. , Leblanc, M. , and Choisnet, J. , 1986, “ Structural Characterization of an Orthorhombic Form of La2NiO4,” Mater. Res. Bull., 21(7), pp. 787–796. [CrossRef]
Byeon, S. H. , Demazeau, G. , and Choy, J. H. , 1995, “ Local Distortion and Chemical Surroundings of NiO6 Octahedra for Ni (III) Oxides With K2NiF4-Type Structure,” Jpn. J. Appl. Phys., 34(11), pp. 6156–6163. [CrossRef]
Lewis, G. V. , and Catlow, C. R. A. , 1985, “ Potential Models for Ionic Oxides,” J. Phys. C: Solid State Phys., 18(6), pp. 1149–1161. [CrossRef]
Read, M. S. D. , Islam, M. S. , King, F. , and Hancock, F. E. , 1999, “ Defect Chemistry of La2Ni1xMxO4 (M = Mn, Fe, Co, Cu): Relevance to Catalytic Behavior,” J. Phys. Chem. B, 103(9), pp. 1558–1562. [CrossRef]
Peck, M. A. , and Langell, M. A. , 2012, “ Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS,” Chem. Mater., 24(23), pp. 4483–4490. [CrossRef]
Prabu, M. , Ketpang, K. , and Shanmugam, S. , 2014, “ Hierarchical Nanostructured NiCo2O4 as an Efficient Bifunctional Non-Precious Metal Catalyst for Rechargeable Zinc–Air Batteries,” Nanoscale, 6(6), pp. 3173–3181. [CrossRef] [PubMed]
Li, C. , Shen, Y. , Zhu, S. , and Shen, S. , 2014, “ Supported Ni–La–Ox for Catalytic Decomposition of N2O I: Component Optimization and Synergy,” RSC Adv., 4(55), pp. 29107–29119. [CrossRef]
Mickevičius, S. , Grebinskij, S. , Bondarenka, V. , Vengalis, B. , Šliužienė, K. , Orlowski, B. A. , Osinniy, V. , and Drube, W. , 2006, “ Investigation of Epitaxial LaNiO3−x Thin Films by High-Energy XPS,” J. Alloys Compd., 423(1–2), pp. 107–111. [CrossRef]
Yan, L. , Yu, R. , Liu, G. , and Xing, X. , 2008, “ A Facile Template-Free Synthesis of Large-Scale Single Crystalline Pr(OH)3 and Pr6O11 Nanorods,” Scri. Mater., 58(8), pp. 707–710. [CrossRef]
Barr, T. L. , 1978, “ An ESCA Study of the Termination of the Passivation of Elemental Metals,” J. Phys. Chem., 82(16), pp. 1801–1810. [CrossRef]
Asha, A. M. D. , Critchley, J. T. S. , and Nix, R. M. , 1998, “ Molecular Adsorption Characteristics of Lanthanum Oxide Surfaces: The Interaction of Water With Oxide Overlayers Grown on Cu(111),” Surf. Sci., 405(2–3), pp. 201–214. [CrossRef]
Wandelt, K. , and Brundle, C. R. , 1985, “ The Interaction of Oxygen With Gadolinium: UPS and XPS Studies,” Surf. Sci., 157(1), pp. 162–182. [CrossRef]
Moulder, J. F. , Stichle, W. F. , Sobol, P. E. , and Bomben, K. D. , 1992, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, Eden Prairie, MN, Chap. I.
Singh, R. K. , Devivaraprasad, R. , Kar, T. , Chakraborty, A. , and Neergat, M. , 2015, “ Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support,” J. Electrochem. Soc., 162(6), pp. 489–498. [CrossRef]
Omanovic, S. , and Roscoe, S. G. , 2000, “ Interfacial Behavior of Beta-Lactoglobulin at a Stainless Steel Surface: An Electrochemical Impedance Spectroscopy Study,” J. Colloid Interface Sci., 227(2), pp. 452–460. [CrossRef] [PubMed]
Abreu, C. M. , Cristobal, M. J. , Losada, R. , Novoa, X. R. , Pena, G. , and Perez, M. C. , 2004, “ High Frequency Impedance Spectroscopy Study of Passive Films Formed on AISI 316 Stainless Steel in Alkaline Medium,” J. Electroanal. Chem., 572(2), pp. 335–345. [CrossRef]
Goodenough, J. B. , and Cushing, B. L. , 2003, Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 2, Wiley, New York, pp. 520–533.
Sunarso, J. , Torriero, A. A. J. , Zhou, W. , Howlett, P. C. , and Forsyth, M. , 2012, “ Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study,” J. Phys. Chem. C, 116(9), pp. 5827–5834. [CrossRef]
Wang, Y. , Yang, Z. , Lu, F. , Jin, C. , Wu, J. , Sheng, M. , Yang, R. , and Chen, F. , 2015, “ Carbon-Coating Functionalized La0.6Sr1.4MnO4+δ Layered Perovskite Oxide: Enhanced Catalytic Activity for the Oxygen Reduction Reaction,” RSC. Adv., 5(2), pp. 974–980. [CrossRef]
Liang, Y. Y. , Li, Y. Y. , Wang, H. L. , Zhou, J. G. , Wang, J. , Regier, T. , and Dai, H. J. , 2011, “ Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction,” Nat. Mater., 10(10), pp. 780–786. [CrossRef] [PubMed]
Lee, D. U. , Kim, B. J. , and Chen, Z. W. , 2013, “ One-Pot Synthesis of a Mesoporous NiCo2O4 Nanoplatelet and Graphene Hybrid and Its Oxygen Reduction and Evolution Activities as an Efficient Bi-Functional Electrocatalyst,” J. Mater. Chem. A, 1(15), pp. 4754–4762. [CrossRef]
Bo, X. G. , Zhang, Y. F. , Li, M. , Nsabimana, A. , and Guo, L. P. , 2015, “ NiCo2O4 Spinel/Ordered Mesoporous Carbons as Noble-Metal Free Electrocatalysts for Oxygen Reduction Reaction and the Influence of Structure of Catalyst Support on the Electrochemical Activity of NiCo2O4,” J. Power Source, 288(15), pp. 1–8. [CrossRef]
Liu, Q. , Jin, J. , and Zhang, J. Y. , 2013, “ NiCo2S4@Graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions,” ACS Appl. Mater. Interfaces, 5(11), pp. 5002−5008. [CrossRef] [PubMed]
Shypunov, I. , Kongi, N. , Kozlova, J. , Matisen, L. , Ritslaid, P. , Sammelselg, V. , and Tammeveski, K. , 2015, “ Enhanced Oxygen Reduction Reaction Activity With Electrodeposited Ag on Manganese Oxide–Graphene Supported Electrocatalyst,” Electrocatalysis, 6(5), pp. 465–471. [CrossRef]


Grahic Jump Location
Fig. 1

XRD patterns of as prepared P2NO, PC1NO, PS1NO, and PB1NO

Grahic Jump Location
Fig. 2

IR spectra of P2NO, PC1NO, PS1NO, and PB1NO

Grahic Jump Location
Fig. 3

Ni 2p2/3 XPS spectra of P2NO, PC1NO, PS1NO, and PB1NO

Grahic Jump Location
Fig. 6

(a) CV curve of P2NO, PC1NO, PS1NO, and PB1NO with a scanning rate of 20 mV s−1, (b) ORR polarization curves of P2NO, PC1NO, PS1NO, and PB1NO under 1600 rpm, (c) Tafel slope based on ORR polarization curves, (d) chronopotentiometic of Pr1.9Ca0.1NiO4 kept at 50 μA cm−2 for 600 min

Grahic Jump Location
Fig. 5

Nyquist plot measured at −0.25 V with varying rotation rates (a) and at varying bias voltage with 1000 rpm (b). The balls and red lines show experimental and fitted data, respectively, (c) Nyquist plot of Pr1.9A0.1NiO4 at −0.25 V and 1000 rpm.

Grahic Jump Location
Fig. 4

O 1s XPS spectra of Pr1.9A0.1NiO4 (A = Ca, Sr, Ba) and Pr2NiO4



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In