Research Papers

Thermal Contact Resistance Measurements of Compressed PEFC Gas Diffusion Media

[+] Author and Article Information
Adam S. Hollinger

Department of Mechanical Engineering,
Penn State Behrend,
Erie, PA 16563
e-mail: ash167@psu.edu

Stefan T. Thynell

Fellow ASME
Department of Mechanical and
Nuclear Engineering,
The Pennsylvania State University,
University Park, PA 16802
e-mail: Thynell@psu.edu

1Corresponding author.

Manuscript received June 16, 2016; final manuscript received January 17, 2017; published online February 14, 2017. Assoc. Editor: Matthew Mench.

J. Electrochem. En. Conv. Stor. 13(4), 041004 (Feb 14, 2017) (5 pages) Paper No: JEECS-16-1082; doi: 10.1115/1.4035803 History: Received June 16, 2016; Revised January 17, 2017

Localized temperature gradients in a polymer electrolyte fuel cell (PEFC) are known to decrease the durability of the polymer membrane. The most important factor in controlling these temperature gradients is the thermal contact resistance at the interface of the gas diffusion layer (GDL) and the bipolar plate. Here, we present thermal contact resistance measurements of carbon paper and carbon cloth GDLs over a pressure range of 0.7–14.5 MPa. Contact resistances are highly dependent upon the clamping pressure applied to a fuel cell, and in the present work, contact resistances vary from 3.5 × 10−4 to 2.0 × 10−5 m2 K/W, decreasing nonlinearly over the pressure range for each material tested. The contact resistances of carbon cloth GDLs are two to four times higher than contact resistances of carbon paper GDLs throughout the range of pressures tested. The data presented here also show that the thermal resistance of the sample is negligible in comparison to the thermal contact resistance. Controlling temperature gradients in a fuel cell is desirable, and the measurements presented here can be used to more accurately predict temperature distribution in a polymer electrolyte fuel cell.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Bapat, C. J. , and Thynell, S. T. , 2007, “ Anisotropic Heat Conduction Effects in Proton-Exchange Membrane Fuel Cells,” ASME J. Heat Transfer, 129(9), pp. 1109–1118. [CrossRef]
Zamel, N. , and Li, X. G. , 2013, “ Effective Transport Properties for Polymer Electrolyte Membrane Fuel Cells-With a Focus on the Gas Diffusion Layer,” Prog. Energy Combust. Sci., 39(1), pp. 111–146. [CrossRef]
Sethuraman, V. A. , Weidner, J. W. , Haug, A. T. , and Protsailo, L. V. , 2008, “ Durability of Perfluorosulfonic Acid and Hydrocarbon Membranes: Effect of Humidity and Temperature,” J. Electrochem. Soc., 155(2), pp. B119–B124. [CrossRef]
Paquin, M. , and Frechette, L. G. , 2008, “ Understanding Cathode Flooding and Dry-Out for Water Management in Air Breathing PEM Fuel Cells,” J. Power Sources, 180(1), pp. 440–451. [CrossRef]
Ju, H. , 2009, “ Investigation of the Effects of the Anisotropy of Gas-Diffusion Layers on Heat and Water Transport in Polymer Electrolyte Fuel Cells,” J. Power Sources, 191(2), pp. 259–268. [CrossRef]
Borup, R. , Meyers, J. , Pivovar, B. , Kim, Y. S. , Mukundan, R. , Garland, N. , Myers, D. , Wilson, M. , Garzon, F. , Wood, D. , Zelenay, P. , More, K. , Stroh, K. , Zawodzinski, T. , Boncella, J. , McGrath, J. E. , Inaba, M. , Miyatake, K. , Hori, M. , Ota, K. , Ogumi, Z. , Miyata, S. , Nishikata, A. , Siroma, Z. , Uchimoto, Y. , Yasuda, K. , Kimijima, K. I. , and Iwashita, N. , 2007, “ Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation,” Chem. Rev., 107(10), pp. 3904–3951. [CrossRef] [PubMed]
Wu, J. F. , Yuan, X. Z. , Martin, J. J. , Wang, H. J. , Zhang, J. J. , Shen, J. , Wu, S. H. , and Merida, W. , 2008, “ A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies,” J. Power Sources, 184(1), pp. 104–119. [CrossRef]
Ma, C. S. , Zhang, L. , Mukerjee, S. , Ofer, D. , and Nair, B. D. , 2003, “ An Investigation of Proton Conduction in Select PEM's and Reaction Layer Interfaces-Designed for Elevated Temperature Operation,” J. Membr. Sci., 219(1–2), pp. 123–136. [CrossRef]
Yang, C. , Srinivasan, S. , Bocarsly, A. B. , Tulyani, S. , and Benziger, J. B. , 2004, “ A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nafion Composite Membranes,” J. Membr. Sci., 237(1–2), pp. 145–161. [CrossRef]
Lin, R. , Xiong, F. , Tang, W. C. , Techer, L. , Zhang, J. M. , and Ma, J. X. , 2014, “ Investigation of Dynamic Driving Cycle Effect on the Degradation of Proton Exchange Membrane Fuel Cell by Segmented Cell Technology,” J. Power Sources, 260, pp. 150–158. [CrossRef]
Fazeli, M. , Hinebaugh, J. , and Bazylak, A. , 2015, “ Investigating Inlet Condition Effects on PEMFC GDL Liquid Water Transport Through Pore Network Modeling,” J. Electrochem. Soc., 162(7), pp. F661–F668. [CrossRef]
Weber, A. Z. , and Newman, J. , 2006, “ Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., 153(12), pp. A2205–A2214. [CrossRef]
Gandomi, Y. A. , Edmundson, M. D. , Busby, F. C. , and Mench, M. M. , 2016, “ Water Management in Polymer Electrolyte Fuel Cells Through Asymmetric Thermal and Mass Transport Engineering of the Micro-Porous Layers,” J. Electrochem. Soc., 163(8), pp. F933–F944. [CrossRef]
Lee, W.-K. , Ho, C.-H. , Van Zee, J. W. , and Murthy, M. , 1999, “ The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell,” J. Power Sources, 84(1), pp. 45–51. [CrossRef]
Ge, J. B. , Higier, A. , and Liu, H. T. , 2006, “ Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance,” J. Power Sources, 159(2), pp. 922–927. [CrossRef]
Mason, T. J. , Millichamp, J. , Neville, T. P. , El-Kharouf, A. , Pollet, B. G. , and Brett, D. J. L. , 2012, “ Effect of Clamping Pressure on Ohmic Resistance and Compression of Gas Diffusion Layers for Polymer Electrolyte Fuel Cells,” J. Power Sources, 219, pp. 52–59. [CrossRef]
Mason, T. J. , Millichamp, J. , Shearing, P. R. , and Brett, D. J. L. , 2013, “ A Study of the Effect of Compression on the Performance of Polymer Electrolyte Fuel Cells Using Electrochemical Impedance Spectroscopy and Dimensional Change Analysis,” Int. J. Hydrogen Energy, 38(18), pp. 7414–7422. [CrossRef]
Zhang, W. , and Wu, C. W. , 2014, “ Effect of Clamping Load on the Performance of Proton Exchange Membrane Fuel Cell Stack and Its Optimization Design: A Review of Modeling and Experimental Research,” ASME J. Fuel Cell Sci. Technol., 11(2), p. 020801.
Chang, W. R. , Hwang, J. J. , Weng, F. B. , and Chan, S. H. , 2007, “ Effect of Clamping Pressure on the Performance of a PEM Fuel Cell,” J. Power Sources, 166(1), pp. 149–154. [CrossRef]
Lin, J.-H. , Chen, W.-H. , Su, Y.-J. , and Ko, T.-H. , 2008, “ Effect of Gas Diffusion Layer Compression on the Performance in a Proton Exchange Membrane Fuel Cell,” Fuel, 87(12), pp. 2420–2424. [CrossRef]
Khandelwal, M. , and Mench, M. M. , 2006, “ Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials,” J. Power Sources, 161(2), pp. 1106–1115. [CrossRef]
Burheim, O. S. , Pharoah, J. G. , Lampert, H. , Vie, P. J. S. , and Kjelstrup, S. , 2010, “ Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers,” ASME J. Fuel Cell Sci. Technol., 8(2), p. 021013. [CrossRef]
Sanders, D. J. , and Forsyth, R. C. , 1983, “ Measurement of Thermal Conductivity and Contact Resistance of Paper and Thin-Film Materials,” Rev. Sci. Instrum., 54(2), pp. 238–244. [CrossRef]
Nitta, I. , Himanen, O. , and Mikkola, M. , 2008, “ Thermal Conductivity and Contact Resistance of Compressed Gas Diffusion Layer of PEM Fuel Cell,” Fuel Cells, 8(2), pp. 111–119. [CrossRef]
Sadeghi, E. , Djilali, N. , and Bahrami, M. , 2011, “ Effective Thermal Conductivity and Thermal Contact Resistance of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells—Part 1: Effect of Compressive Load,” J. Power Sources, 196(1), pp. 246–254. [CrossRef]
Yablecki, J. , Nabovati, A. , and Bazylak, A. , 2012, “ Modeling the Effective Thermal Conductivity of an Anisotropic Gas Diffusion Layer in a Polymer Electrolyte Membrane Fuel Cell,” J. Electrochem. Soc., 159(6), pp. B647–B653. [CrossRef]
Karimi, G. , Li, X. , and Teertstra, P. , 2010, “ Measurement of Through-Plane Effective Thermal Conductivity and Contact Resistance in PEM Fuel Cell Diffusion Media,” Electrochim. Acta, 55(5), pp. 1619–1625. [CrossRef]
Unsworth, G. , Zamel, N. , and Li, X. G. , 2012, “ Through-Plane Thermal Conductivity of the Microporous Layer in a Polymer Electrolyte Membrane Fuel Cell,” Int. J. Hydrogen Energy, 37(6), pp. 5161–5169. [CrossRef]
Burheim, O. , Vie, P. J. S. , Pharoah, J. G. , and Kjelstrup, S. , 2010, “ Ex Situ Measurements of Through-Plane Thermal Conductivities in a Polymer Electrolyte Fuel Cell,” J. Power Sources, 195(1), pp. 249–256. [CrossRef]
Zamel, N. , Li, X. G. , Becker, J. , and Wiegmann, A. , 2011, “ Effect of Liquid Water on Transport Properties of the Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells,” Int. J. Hydrogen Energy, 36(9), pp. 5466–5478. [CrossRef]
Marotta, E. E. , and Fletcher, L. S. , 1996, “ Thermal Contact Conductance of Selected Polymeric Materials,” J. Thermophys. Heat Transfer, 10(2), pp. 334–342. [CrossRef]
Xu, G. , LaManna, J. M. , Clement, J. T. , and Mench, M. M. , 2014, “ Direct Measurement of Through-Plane Thermal Conductivity of Partially Saturated Fuel Cell Diffusion Media,” J. Power Sources, 256, pp. 212–219. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic of thermal conductivity cell: A—brass cooling chamber, B—upper brass column, C—ConFlat full nipple, D—lower brass column, E—O-ring cover, F—pneumatic actuator, G—brass connection column, H—sample space, I—ConFlat flange, J—cartridge heater, K—stainless steel shaft, L—actuator–shaft connection, and M—spacer

Grahic Jump Location
Fig. 2

Image of (a) thermal conductivity cell, (b) top surface of lower brass fluxmeter, and (c) four thermistors evenly spaced along lower brass fluxmeter

Grahic Jump Location
Fig. 3

Temperature versus position from heater as a function of applied pressure (AvCarb P50T sample)

Grahic Jump Location
Fig. 4

Contact resistance of gas diffusion layers versus applied pressure

Grahic Jump Location
Fig. 5

Heat flux through gas diffusion layers versus applied pressure

Grahic Jump Location
Fig. 6

Temperature drop across gas diffusion layers versus applied pressure



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In