Research Papers

Modeling and Designing of a Radial Anode Off-Gas Recirculation Fan for Solid Oxide Fuel Cell Systems

[+] Author and Article Information
Patrick H. Wagner

Laboratory for Applied Mechanical
Design (LAMD),
École Polytechnique Fédérale de
Lausanne (EPFL),
Rue de la Maladière 71b,
Neuchâtel 2002, Switzerland
e-mail: patrick.wagner@epfl.ch

Zacharie Wuillemin

HTceramix SA—SOLIDpower,
Avenue des Sports 26,
Yverdon-les-Bains 1400, Switzerland
e-mail: zacharie.wuillemin@solidpower.com

Stefan Diethelm

Group of Energy Materials (GEM),
École Polytechnique Fédérale de Lausanne (EPFL),
Rue de l'Industrie 17,
Sion 1951, Switzerland
e-mail: stefan.diethelm@epfl.ch

Jan Van herle

Group of Energy Materials (GEM),
École Polytechnique Fédérale de
Lausanne (EPFL),
Rue de l'Industrie 17,
Sion 1951, Switzerland
e-mail: jan.vanherle@epfl.ch

Jürg Schiffmann

Laboratory for Applied Mechanical
Design (LAMD),
École Polytechnique Fédérale de
Lausanne (EPFL),
Rue de la Maladière 71b,
Neuchâtel 2002, Switzerland
e-mail: jurg.schiffmann@epfl.ch

Manuscript received September 14, 2016; final manuscript received April 5, 2017; published online May 10, 2017. Editor: Wilson K. S. Chiu.

J. Electrochem. En. Conv. Stor. 14(1), 011005 (May 10, 2017) (12 pages) Paper No: JEECS-16-1126; doi: 10.1115/1.4036401 History: Received September 14, 2016; Revised April 05, 2017

To improve the industry benchmark of solid oxide fuel cell (SOFC) systems, we consider anode off-gas recirculation (AOR) using a small-scale fan. Evolutionary algorithms compare different system design alternatives with hot or cold recirculation. The system performance is evaluated through multi-objective optimization (MOO) criteria, i.e., maximization of electrical efficiency and cogeneration efficiency. The aerodynamic efficiency and rotordynamic stability of the high-speed recirculation fan is investigated in detail. The results obtained suggest that improvements to the best SOFC systems, in terms of net electrical efficiency, are achievable, including for small power scale (10 kWe).

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Zhao, Y. , Xia, C. , Jia, L. , Wang, Z. , Li, H. , Yu, J. , and Li, Y. , 2013, “ Recent Progress on Solid Oxide Fuel Cell: Lowering Temperature and Utilizing Non-Hydrogen Fuels,” Int. J. Hydrogen Energy, 38(36), pp. 16498–16517. [CrossRef]
Facchinetti, E. , 2012, “ Integrated Solid Oxide Fuel Cell: Gas Turbine Hybrid Systems With or Without CO2 Separation,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
Payne, R. J. , Love, J. , and Kah, M. , 2011, “ CFCL's BlueGen Product,” ECS Trans., 35(1), pp. 81–85.
Autissier, N. , 2008, “ Small Scale SOFC Systems: Design, Optimization and Experimental Results,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
Peters, R. , Deja, R. , Blum, L. , Pennanen, J. , Kiviaho, J. , and Hakala, T. , 2013, “ Analysis of Solid Oxide Fuel Cell System Concepts With Anode Recycling,” Int. J. Hydrogen Energy, 38(16), pp. 6809–6820. [CrossRef]
Powell, M. , Meinhardt, K. , Sprenkle, V. , Chick, L. , and McVay, G. , 2012, “ Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation,” J. Power Sources, 205, pp. 377–384. [CrossRef]
Halinen, M. , Rautanen, M. , Saarinen, J. , Pennanen, J. , Pohjoranta, A. , Kiviaho, J. , Pastula, M. , Nuttall, B. , Rankin, C. , and Borglum, B. , 2011, “ Performance of a 10 kW SOFC Demonstration Unit,” ECS Trans., 35(1), pp. 113–120.
Halinen, M. , Pohjoranta, A. , Kujanpää, L. , Väisänen, V. , and Salminen, P. , 2014, “ Summary of the RealDemo—Project 2012-2014,” VTT Technical Research Centre of Finland, Espoo, Finland, Report No. VTT-R-02976-14.
Palazzi, F. , Autissier, N. , Marechal, F. M. A. , and Favrat, D. , 2007, “ A Methodology for Thermo-Economic Modeling and Optimization of Solid Oxide Fuel Cell Systems,” Appl. Therm. Eng., 27(16), pp. 2703–2712. [CrossRef]
Facchinetti, E. , Favrat, D. , and Marechal, F. , 2014, “ Design and Optimization of an Innovative Solid Oxide Fuel Cell–Gas Turbine Hybrid Cycle for Small Scale Distributed Generation,” Fuel Cells, 14(4), pp. 595–606. [CrossRef]
Van Herle, J. , Maréchal, F. , Leuenberger, S. , and Favrat, D. , 2003, “ Energy Balance Model of a SOFC Cogenerator Operated With Biogas,” J. Power Sources, 118(1–2), pp. 375–383. [CrossRef]
Modena, S. , Ceschini, S. , Contino, A. R. , Bini, R. , Tognana, L. , Bertoldi, M. , and Wuillemin, Z. , 2013, “ Evolution of SOFCpower’ Stack Performances,” ECS Trans., 57(1), pp. 359–366. [CrossRef]
Balje, O. E. , 1981, Turbomachines: A Guide to Design, Selection and Theory, Wiley, New York.
Wiesner, F. J. , 1979, “ A New Appraisal of Reynolds Number Effects on Centrifugal Compressor Performance,” ASME J. Eng. Power, 101(3), pp. 384–392. [CrossRef]
Demierre, J. , Rubino, A. , and Schiffmann, J. , 2014, “ Modeling and Experimental Investigation of an Oil-Free Microcompressor-Turbine Unit for an Organic Rankine Cycle Driven Heat Pump,” ASME J. Eng. Gas Turbines Power, 137(3), p. 32602. [CrossRef]
Mack, M. , 1967, “ Luftreibungsverluste bei elektrischen Maschinen kleiner Baugröße,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
Zwyssig, C. , Round, S. D. , and Kolar, J. W. , 2006, “ Analytical and Experimental Investigation of a Low Torque, Ultra-High Speed Drive System,” Conference Record of the 2006 IEEE Industry Applications Conference, 41st IAS Annual Meeting, Tampa, FL, Oct. 8–12, pp. 1507–1513.
Leyland, G. , 2002, “ Multi-Objective Optimisation Applied to Industrial Energy Problems,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
Molyneaux, A. , 2002, “ A Practical Evolutionary Method for the Multi-Objective Optimisation of Complex Integrated Energy Systems Including Vehicle Drivetrains,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
Schiffmann, J. , and Favrat, D. , 2010, “ Design, Experimental Investigation and Multi-Objective Optimization of a Small-Scale Radial Compressor for Heat Pump Applications,” Energy, 35(1), pp. 436–450. [CrossRef]
Demierre, J. , Favrat, D. , Schiffmann, J. , and Wegele, J. , 2014, “ Experimental Investigation of a Thermally Driven Heat Pump Based on a Double Organic Rankine Cycle and an Oil-Free Compressor-Turbine Unit,” Int. J. Refrig., 44, pp. 91–100. [CrossRef]
Aungier, R. H. , 2000, Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis, ASME Press, New York.
Cumpsty, N. A. , 2004, Compressor Aerodynamics, Krieger Publishing, Malabar, FL.
Lüdtke, K. H. , 2004, Process Centrifugal Compressors: Basics, Functions, Operation, Design, Application, Springer, Berlin.
Rusch, D. , and Casey, M. , 2013, “ The Design Space Boundaries for High Flow Capacity Centrifugal Compressors,” ASME J. Turbomach., 135(3), pp. 543–556. [CrossRef]
Javed, A. , Arpagaus, C. , Bertsch, S. , and Schiffmann, J. , 2016, “ Small-Scale Turbocompressors for Wide-Range Operation With Large Tip-Clearances for a Two-Stage Heat Pump Concept,” Int. J. Refrig., 69, pp. 285–302. [CrossRef]
Eck, B. , 2003, Ventilatoren: Entwurf und Betrieb der Radial-, Axial- und Querstromventilatoren, Springer, Berlin.
Japiske, D. , 1996, Centrifugal Compressor Design and Performance, Concepts ETI, Wilder, VT.
Pfleiderer, C. , 1961, Die Kreiselpumpen für Flüssigkeiten und Gase: Wasserpumpen, Ventilatoren, Turbogebläse, Turbokompressoren, Springer, Berlin.
Lewis, R. I. , 1996, Turbomachinery Performance Analysis, Arnold, London.
Schiffmann, J. , 2015, “ Integrated Design and Multi-Objective Optimization of a Single Stage Heat-Pump Turbocompressor,” ASME J. Turbomach., 137(7), p. 71002. [CrossRef]
Schiffmann, J. , and Favrat, D. , 2010, “ Integrated Design and Optimization of Gas Bearing Supported Rotors,” ASME J. Mech. Des., 132(5), p. 51007. [CrossRef]
Gross, W. A. , 1962, Gas Film Lubrication, Wiley, New York.
Schiffmann, J. , 2013, “ Enhanced Groove Geometry for Herringbone Grooved Journal Bearings,” ASME J. Eng. Gas Turbines Power, 135(10), p. 102501. [CrossRef]


Grahic Jump Location
Fig. 1

Methodology of the SOFC system optimization using OSMOSE and the fan modeling and designing

Grahic Jump Location
Fig. 2

Process flow diagram of the considered co-flow SOFC system with 10 kWe

Grahic Jump Location
Fig. 3

Comparison between experimental and simulated results for a short SOFC stack (six cells), cell area 80 cm2, and 75% fuel utilization

Grahic Jump Location
Fig. 4

Pareto front of the optimized SOFC systems

Grahic Jump Location
Fig. 5

Fan efficiencies for the SOFC system with cold AOR, calculated with the 0D (similarity concepts), 1D, and 3D model for different specific speed values. Optimized specific speed values are indicated with stars.

Grahic Jump Location
Fig. 6

The SOFC system composite curve for cold AOR (solid line) and hot AOR (dashed line) at the point A, respectively, B on the Pareto front shown in Fig. 4

Grahic Jump Location
Fig. 7

Evolution of three design variables along the Pareto front

Grahic Jump Location
Fig. 8

Evolution of the fuel cell parameters along the Pareto front (constant current density of 0.4 A/cm2)

Grahic Jump Location
Fig. 9

Evolution of anode off-gas recirculation, local and global fuel utilization along the Pareto front

Grahic Jump Location
Fig. 10

Evolution of system temperatures (left y-axis) and cathode air excess ratio along the Pareto front (right Y-axis)

Grahic Jump Location
Fig. 11

Evolution of isentropic fan, mechanical and total efficiencies along the Pareto front

Grahic Jump Location
Fig. 12

Evolution of rotor speeds, fan and shaft diameters along the Pareto front

Grahic Jump Location
Fig. 13

Anode off-gas recirculation fan design with four full and four splitter blades (left), as well as fan from the side view with mounted fan nose cone and stainless steel shaft, coated with diamond-like carbide (DLC), with one of the two herringbone grooved journal bearings (right). Every tick is a one mm.

Grahic Jump Location
Fig. 14

Meridional view of fan impeller with relative velocity flow field

Grahic Jump Location
Fig. 15

Illustration of the full computational recirculator domain and grid

Grahic Jump Location
Fig. 16

Campbell diagram of the rotor with forward (circle) and backward (square) modes and corresponding logarithmic decrements



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In