Research Papers

Evaluation and Application of a Novel BaO–CaO–SiO2–CoO–B2O3 Based Glass-Ceramic Sealing Material for Solid Oxide Fuel Cells

[+] Author and Article Information
Zhaonan Li, Jiajun Yang, Jian Pu

School of Materials Science and Engineering,
State Key Laboratory of Material Processing
and Die and Mould Technology,
Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China

Dong Yan

School of Materials Science and Engineering,
State Key Laboratory of Material Processing
and Die and Mould Technology,
Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China
e-mail: yand@hust.edu.cn

Ping Feng

College of Materials and Chemical Engineering,
Key Laboratory of Inorganic Nonmetallic
Crystalline and Energy Conversion Materials,
China Three Gorges University,
Yichang 443002, Hubei, China

1Z. Li and J. Yang contributed equally to this work.

2Corresponding author.

Manuscript received February 27, 2017; final manuscript received June 27, 2017; published online October 4, 2017. Assoc. Editor: San Ping Jiang.

J. Electrochem. En. Conv. Stor. 14(4), 041006 (Oct 04, 2017) (7 pages) Paper No: JEECS-17-1026; doi: 10.1115/1.4037648 History: Received February 27, 2017; Revised June 27, 2017

Sealant is used in a solid oxide fuel cell (SOFC) stack to separate fuel and oxygen from burning with each other throughout the stack's lifetime cycle. Various sealing materials have been developed and the glass sealant shows quite a potential for its low leaking rate. However, glass sealants usually suffer from fractures during thermal cycle because of their low-temperature brittleness and mismatched coefficient of thermal expansion. Recently, we have developed a novel glass-based sealant consisting of BaO–CaO–SiO2–CoO and a small amount of Al2O3 powder which is used to adjust the coefficient of thermal expansion (CTE) and reinforce its mechanical performance. The sealant exhibited a good performance with the leaking rates less than 0.04 sccm cm−1 under compressive load of 0.17 MPa at 750 °C and showed stable leak rates over several thermal cycles. The well bonded interfaces and chemical compatibility have been identified by microstructure analysis of the seals. The sealant also demonstrated its applicability in a one-cell stack test.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Kim, S. D. , Hyun, S. H. , Moon, J. , Kim, J. H. , and Song, R. H. , 2005, “ Fabrication and Characterization of Anode-Supported Electrolyte Thin Films for Intermediate Temperature Solid Oxide Fuel Cells,” J. Power Sources, 139(1), pp. 67–72. [CrossRef]
Singhal, S. C. , 2002, “ Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications,” Solid State Ionics, 152–153, pp. 405–410. [CrossRef]
Minh, N. Q. , 2004, “ Solid Oxide Fuel Cell Technology—Features and Applications,” Solid State Ionics, 174(1), pp. 271–277. [CrossRef]
Du, Y. , Sammes, N. M. , and England, R. , 2003, “ Novel SOFC Tubular Design Configurations,” Proc. Electrochem. Soc., 7, pp. 1077–1081. http://cat.inist.fr/?aModele=afficheN&cpsidt=16971002
Mahata, T. , Nair, S. R. , Lenka, R. K. , and Sinha, P. K. , 2012, “ Fabrication of Ni-YSZ Anode Supported Tubular SOFC Through Iso-Pressing and Co-Firing Route,” Int. J. Hydrogen Energy, 37(4), pp. 3874–3882. [CrossRef]
Wang, X. , Yan, D. , Fang, D. , Luo, J. , Pu, J. , Chi, B. , and Jian, L. , 2013, “ Optimization of Al2O3-Glass Composite Seals for Planar Intermediate-Temperature Solid Oxide Fuel Cells,” J. Power Sources, 226, pp. 127–133. [CrossRef]
Kobsiriphat, W. , and Barnett, S. , 2008, “ Ag–Cu–Ti Braze Materials for Sealing SOFCs,” ASME J. Fuel Cell Sci. Technol., 5(1), p. 011002. [CrossRef]
Fergus, J. W. , 2005, “ Sealants for Solid Oxide Fuel Cells,” J. Power Sources, 147(1), pp. 46–57. [CrossRef]
Dai, Z. , Pu, J. , Yan, D. , Chi, B. , and Jian, L. , 2011, “ Thermal Cycle Stability of Al2O3-Based Compressive Seals for Planar Intermediate Temperature Solid Oxide Fuel Cells,” Int. J. Hydrogen Energy, 36(4), pp. 3131–3137. [CrossRef]
Puig, J. , Ansart, F. , Lenormand, P. , Conradt, R. , and Gross-Barsnick, S. M. , 2016, “ Development of Barium Boron Aluminosilicate Glass Sealants Using a Sol–Gel Route for Solid Oxide Fuel Cell Applications,” J. Mater. Sci., 51(2), pp. 979–988. [CrossRef]
Kim, E. A. , Choi, H. W. , and Yang, Y. S. , 2015, “ Effects of Al2O3 on (1 − x)[SrO–SiO2–B2O3]–xAl2O3 Glass Sealant for Intermediate Temperature Solid Oxide Fuel Cell,” Ceram. Int., 41(10), pp. 14621–14626. [CrossRef]
Story, C. , Lu, K. , Reynolds, W. T. , and Brown, D. , 2008, “ Shape Memory Alloy/Glass Composite Seal for Solid Oxide Electrolyzer and Fuel Cells,” Int. J. Hydrogen Energy, 33(14), pp. 3970–3975. [CrossRef]
Lara, C. , Pascual, M. J. , and Duran, A. , 2004, “ Glass-Forming Ability, Sinterability and Thermal Properties in the Systems RO–BaO–SiO2 (R= Mg, Zn),” J. Non-Cryst. Solids, 348, pp. 149–155. [CrossRef]
Mahapatra, M. K. , and Lu, K. , 2010, “ Seal Glass for Solid Oxide Fuel Cells,” J. Power Sources, 195(21), pp. 7129–7139. [CrossRef]
Ghosh, S. , Kundu, P. , Sharma, A. D. , Basu, R. N. , and Maiti, H. S. , 2008, “ Microstructure and Property Evaluation of Barium Aluminosilicate Glass-Ceramic Sealant for Anode-Supported Solid Oxide Fuel Cell,” J. Eur. Ceram. Soc., 28(1), pp. 69–76. [CrossRef]
Smeacetto, F. , Salvo, M. , Santarelli, M. , Leone, P. , Ortigoza-Villalba, G. A. , Lanzini, A. , Ajitdoss, L. C. , and Ferraris, M. , 2013, “ Performance of a Glass-Ceramic Sealant in a SOFC Short Stack,” Int. J. Hydrogen Energy, 38(1), pp. 588–596. [CrossRef]
Smeacetto, F. , Chrysanthou, A. , Salvo, M. , Moskalewicz, T. , Bytner, F. H. , Ajitdoss, L. C. , and Ferraris, M. , 2011, “ Thermal Cycling and Ageing of a Glass-Ceramic Sealant for Planar SOFCs,” Int. J. Hydrogen Energy, 36(18), pp. 11895–11903. [CrossRef]
Arora, A. , Singh, K. , and Pandey, O. P. , 2011, “ Thermal, Structural and Crystallization Kinetics of SiO2–BaO–ZnO–B2O3–Al2O3 Glass Samples as a Sealant for SOFC,” Int. J. Hydrogen Energy, 36(22), pp. 14948–14955. [CrossRef]
Luo, L. , Lin, Y. , Huang, Z. , Wu, Y. , Sun, L. , Cheng, L. , and Shi, J. , 2015, “ Application of BaO–CaO–Al2O3–B2O3–SiO2 Glass-Ceramic Seals in Large Size Planar IT-SOFC,” Ceram. Int., 41(8), pp. 9239–9243. [CrossRef]
Smeacetto, F. , De Miranda, A. , Polo, S. C. , Molin, S. , Boccaccini, D. , Salvo, M. , and Boccaccini, A. R. , 2015, “ Electrophoretic Deposition of Mn1.5Co1.5O4 on Metallic Interconnect and Interaction With Glass-Ceramic Sealant for Solid Oxide Fuel Cells Application,” J. Power Sources, 280, pp. 379–386. [CrossRef]
Zhang, W. , Yan, D. , Duan, J. , Pu, J. , Chi, B. , and Li, J. , 2013, “ Development of Al2O3/Glass-Based Multi-Layer Composite Seals for Planar Intermediate-Temperature Solid Oxide Fuel Cells,” Int. J. Hydrogen Energy, 38(35), pp. 15371–15378. [CrossRef]
Lim, H. Y. , Kim, H. C. , Choi, S. H. , Kim, H. R. , Son, J. W. , Lee, H. W. , and Lee, J. H. , 2008, “ Fabrication and Characterization of Composite Sealants for Low Temperature (600–650 °C) SOFCs,” J. Korean Ceram. Soc., 45(12), pp. 802–806. [CrossRef]
Mahato, N. , Banerjee, A. , Gupta, A. , Omar, S. , and Balani, K. , 2015, “ Progress in Material Selection for Solid Oxide Fuel Cell Technology: A Review,” Prog. Mater. Sci., 72, pp. 141–337. [CrossRef]
Reddy, A. A. , Goel, A. , Tulyaganov, D. U. , Kapoor, S. , Pradeesh, K. , Pascual, M. J. , and Ferreira, J. M. , 2013, “ Study of Calcium–Magnesium– Aluminum–Silicate (CMAS) Glass and Glass-Ceramic Sealant for Solid Oxide Fuel Cells,” J. Power Sources, 231, pp. 203–212. [CrossRef]
Sakuragi, S. , Funahashi, Y. , Suzuki, T. , Fujishiro, Y. , and Awano, M. , 2008, “ Non-Alkaline Glass–MgO Composites for SOFC Sealant,” J. Power Sources, 185(2), pp. 1311–1314. [CrossRef]
Smeacetto, F. , Salvo, M. , Bytner, F. D. H. , Leone, P. , and Ferraris, M. , 2010, “ New Glass and Glass-Ceramic Sealants for Planar Solid Oxide Fuel Cells,” J. Eur. Ceram. Soc., 30(4), pp. 933–940. [CrossRef]
Chou, Y. S. , Stevenson, J. W. , and Gow, R. N. , 2007, “ Novel Alkaline Earth Silicate Sealing Glass for SOFC: Part II—Sealing and Interfacial Microstructure,” J. Power Sources, 170(2), pp. 395–400. [CrossRef]
Da Silva, M. J. , Bartolomé, J. F. , Antonio, H. , and Mello-Castanho, S. , 2016, “ Glass Ceramic Sealants Belonging to BAS (BaO–Al2O3–SiO2) Ternary System Modified With B2O3 Addition: A Different Approach to Access the SOFC Seal Issue,” J. Eur. Ceram. Soc., 36(3), pp. 631–644. [CrossRef]
Smeacetto, F. , Salvo, M. , Ferraris, M. , Casalegno, V. , Asinari, P. , and Chrysanthou, A. , 2008, “ Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supported-Electrolyte in Planar SOFCs,” J. Eur. Ceram. Soc., 28(13), pp. 2521–2527. [CrossRef]
Sang, S. , Li, W. , Pu, J. , and Jian, L. , 2008, “ Novel Al2O3-Based Compressive Seals for IT-SOFC Applications,” J. Power Sources, 177(1), pp. 77–82. [CrossRef]
Chen, J. , Yang, H. , Chadeyron, R. , Tang, D. , and Zhang, T. , 2014, “ Tuning the Interfacial Reaction Between CaO–SrO–Al2O 3–B2O3–SiO2 Sealing Glass-Ceramics and Cr-Containing Interconnect: Crystalline Structure vs. Glass Structure,” J. Eur. Ceram. Soc., 34(8), pp. 1989–1996. [CrossRef]
Touloukian, Y. S. , 1967, Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York.
Weil, K. S. , Deibler, J. E. , Hardy, J. S. , Chick, L. A. , Coyle, C. A. , Kim, D. S. , and Xia, G. , 2004, “ Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” J. Mater. Eng. Perform., 13(3), p. 316. [CrossRef]
Bansal, N. P. , Hyatt, M. J. , and Drummond, C. H. , 1991, “ Crystallization and Properties of Sr‐Ba Aluminosilicate Glass‐Ceramic Matrices,” 15th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2—Ceramic Engineering and Science Proceedings, Vol. 12, Wiley, Hoboken, NJ, pp. 1222–1234. [CrossRef]


Grahic Jump Location
Fig. 1

Scanning electron microscope (SEM) micrographs of (a) BCSC glass, (b) Al2O3 powders, and (c) particle size distribution used for fabrication of glass-based sealant

Grahic Jump Location
Fig. 2

XRD patterns of (a) glass and (b) Al2O3 powders used for fabrication of glass-based sealant

Grahic Jump Location
Fig. 3

Thermal expansion coefficient curve of glass with different Al2O3 contents

Grahic Jump Location
Fig. 4

Morphology of the die press samples after being heated to 750 °C for 2 h

Grahic Jump Location
Fig. 5

The leakage rate of tape-cast glass seals with various glass contents at 750 °C and 0.17 MPa compressive load

Grahic Jump Location
Fig. 6

SEM microstructure of (a) BCSC-A10, (b) BCSC-A30, and (c) BCSC-A50 sealants after leak test at 750 °C and 0.17 MPa compressive load

Grahic Jump Location
Fig. 7

Leakage rates of BCSC-A10 under thermal cycling

Grahic Jump Location
Fig. 8

The XRD pattern of BCSC-A10 seal after 25 times thermal cycles under a compressive load of 0.17 MPa between 400 °C and 750 °C

Grahic Jump Location
Fig. 9

SEM microstructure and energy-dispersive X-ray spectroscopy line scan of interfaces of (a) and (c) anode-BCSC-Al2O3 seals and (b) and (d) interconnect-BCSC-A10

Grahic Jump Location
Fig. 10

The bonding strength between interconnect/anode and BCSC-A10

Grahic Jump Location
Fig. 11

Power density curve of the one-cell stack and its 90 h constant current performance during operation



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In