Research Papers

Influence of Roasting Temperature on Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode for Lithium-Ion Battery

[+] Author and Article Information
Lei Niu

School of Materials Science and Engineering;
State Key Laboratory of Advanced Processing
and Recycling of Nonferrous Metals,
Lanzhou University of Technology,
Lanzhou 730050, China

Shan Geng, Hongliang Li, Songli Du

College of Petrochemical Technology,
Lanzhou University of Technology,
Lanzhou 730050, China

Xiaoling Cui

School of Materials Science and Engineering;
State Key Laboratory of Advanced Processing
and Recycling of Nonferrous Metals;
College of Petrochemical Technology,
Lanzhou University of Technology,
Lanzhou 730050, China

Shiyou Li

College of Petrochemical Technology,
Lanzhou University of Technology,
Lanzhou 730050, China
e-mail: sylilw@163.com

1Corresponding author.

Manuscript received July 2, 2017; final manuscript received September 14, 2017; published online March 15, 2018. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 15(2), 021007 (Mar 15, 2018) (7 pages) Paper No: JEECS-17-1083; doi: 10.1115/1.4038799 History: Received July 02, 2017; Revised September 14, 2017

Nanomicro spheres of LiNi0.5Mn1.5O4 materials are prepared by carbonate coprecipitation method. The effect of calcination temperatures on morphology and electrochemical property is explored. Results show that the structure of the material becomes more compact with the increase of the temperature, which is propitious to the improvement of electrical conductivity and activation level of the material. The charge–discharge tests show that the sample obtained at 850 °C (LNMO850) exhibits optimal rate capability and cyclic stability, due to the fact that LNMO850 has a high diffusion coefficient, which is propitious to the improvement of electrical conductivity and activation level of the material.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Xu, T. , Wang, W. , Gordin, M. L. , Wang, D. , and Choi, D. , 2010, “ Lithium-Ion Batteries for Stationary Energy Storage,” JOM, 62(9), pp. 24–30. [CrossRef]
Ji, L. , Lin, Z. , Alcoutlabi, M. , and Zhang, X. , 2011, “ Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries,” Energy Environ. Sci., 4(8), pp. 2682–2699. [CrossRef]
Lin, H. B. , Hu, J. N. , Rong, H. B. , Zhang, Y. M. , Mai, S. W. , Xing, L. D. , Xu, M. Q. , Li, X. P. , and Li, W. S. , 2014, “ Porous LiMn2O4 Cubes Architectured With Single-Crystalline Nanoparticles and Exhibiting Excellent Cyclic Stability and Rate Capability as the Cathode of a Lithium Ion Battery,” J. Mater. Chem. A, 2(24), pp. 9272–9279. [CrossRef]
Wang, J. , Yu, Y. Y. , Wu, B. H. , Lin, W. Q. , Li, J. Y. , and Zhao, J. B. , 2015, “ A Homogeneous Intergrown Material of LiMn2O4 and LiNi0.5Mn1.5O4 as a Cathode Material for Lithium-Ion Batteries,” J. Mater. Chem. A, 3(5), pp. 2353–2360. [CrossRef]
Ariyoshi, K. , Iwakoshi, Y. , Nakayama, N. , and Ohzuku, T. , 2004, “ Topotactic Two-Phase Reactions of Li[Ni1/2Mn3/2]O4(P4332) in Nonaqueous Lithium Cells,” J. Electrochem. Soc., 151(2), pp. A296–A303. [CrossRef]
Aklalouch, M. , Amarilla, J. M. , Rojas, R. M. , Saadoune, I. , and Rojo, J. M. , 2010, “ Sub-Micrometric LiCr0.2Ni0.4Mn1.4O4 Spinel as 5V-Cathode Material Exhibiting Huge Rate Capability at 25 and 55 °C,” Electrochem. Commun., 12(4), pp. 548–552. [CrossRef]
Yaqub, A. , Lee, Y. J. , Hwang, M. J. , Pervez, S. A. , Farooq, U. , Choi, J. H. , Kim, D. , Choi, H. Y. , Cho, S. B. , and Doh, C. H. , 2014, “ Low Temperature Performance of Graphite and LiNi0.6Co0.2Mn0.2O2 Electrodes in Li-Ion Batteries,” J. Mater. Sci., 49(22), pp. 7707–7714. [CrossRef]
Kim, H. S. , Jin, K. M. , Jin, B. S. , Kim, W. S. , Koo, H. J. , and Wang, G. , 2011, “ Synthesis and Electrochemical Performance of LiMnxFex-1PO4/C Cathode Material for Lithium Secondary Batteries,” Met. Mater. Int., 17(5), pp. 817–821. [CrossRef]
Talyosef, Y. , Markovsky, B. , Salitra, G. , Aurbach, D. , Kim, H. J. , and Choi, S. , 2005, “ The Study of LiNi0.5Mn1.5O4 5-V Cathodes for Li-Ion Batteries,” J. Power Sources, 146(1), pp. 664–669. [CrossRef]
Strobel, P. , Ibarra Palos, A. , Anne, M. , and Le Cras, F. , 2000, “ Structural, Magnetic and Lithium Insertion Properties of Spinel-Type Li2Mn3MO8 Oxides (M = Mg, Co, Ni, Cu),” J. Mater. Chem., 10(2), pp. 429–436. [CrossRef]
Patoux, S. , Sannier, L. , Lignier, H. , Reynier, Y. , Bourbon, C. , Jouanneau, S. , Le Cras, F. , and Martinet, S. , 2008, “ High Voltage Nickel Manganese Spinel Oxides for Li-Ion Batteries,” Electrochim. Acta, 53(12), pp. 4137–4145. [CrossRef]
Gao, Y. , Myrtle, K. , Zhang, M. , Reimers, J. N. , and Dahn, J. R. , 1996, “ Valence Band of LiNixMn2-xO4 and Its Effects on the Voltage Profiles of LiNixMn2-xO4/Li Electrochemical Cells,” Phys. Rev. A, 54(23), pp. 16670–16675.
Wang, Y. , and Cao, G. , 2008, “ Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries,” Adv. Mater., 20(12), pp. 2251–2269. [CrossRef]
Qian, Y. , Deng, Y. , Shi, Z. , Zhou, Y. , Zhuang, Q. , and Chen, G. , 2013, “ Sub-Micrometer-Sized LiMn1.5Ni0.5O4 Spheres as High Rate Cathode Materials for Long-Life Lithium Ion Batteries,” Electrochem. Commun., 27, pp. 92–95. [CrossRef]
Fang, H. , Wang, Z. , Zhang, B. , Li, X. , and Li, G. , 2007, “ High Performance LiNi0.5Mn1.5O4 Cathode Materials Synthesized by a Combinational Annealing Method,” Electrochem. Commun., 9(5), pp. 1077–1082. [CrossRef]
Sun, Y. , Yang, Y. , Zhan, H. , Shao, H. , and Zhou, Y. , 2010, “ Synthesis of High Power Type LiMn1.5Ni0.5O4 by Optimizing its Preparation Conditions,” J. Power Sources, 195(13), pp. 4322–4326. [CrossRef]
Kunduraci, M. , and Amatucci, G. G. , 2008, “ The Effect of Particle Size and Morphology on the Rate Capability of 4.7 V LiMn1.5+δNi0.5−δO4 Spinel Lithium-Ion Battery Cathodes,” Electrochim. Acta, 53(12), pp. 4193–4199. [CrossRef]
Ragavendran, K. , Chou, H. L. , Lu, L. , Lai, M. O. , Hwang, B. J. , Ravi Kumar, R. , Gopukumar, S. , Emmanuel, B. , Vasudevan, D. , and Sherwood, D. , 2011, “ Crystal Habits of LiMn2O4 and Their Influence on the Electrochemical Performance,” Phys. Rev. B, 176(16), pp. 1257–1263.
Zheng, C. H. , Liu, X. , Wu, Z. F. , Chen, Z. D. , and Fang, D. L. , 2013, “ Excellent Electrochemical Performance of Porous Nanoparticles-Constructed Granule LiMn2O4 Derived From a Highly Reactive Mn3O4,” Electrochim. Acta, 111, pp. 192–199. [CrossRef]
Yang, T. , Sun, K. , Lei, Z. , Zhang, N. , and Lang, Y. , 2010, “ The Influence of Holding Time on the Performance of LiNi0.5Mn1.5O4 Cathode for Lithium Ion Battery,” J. Alloys Compd., 502(1), pp. 215–219. [CrossRef]
Cui, Y. L. , Sun, Z. , and Zhuang, Q. C. , 2011, “ Electrochemical Properties of a 4.7 V-Class LiNi0.5Mn1.5O4 Positive Electrode Material for High Power Li-Ion Battery,” J. Inorg. Organomet. Polym. Mater., 21(4), pp. 893–899. [CrossRef]
Lee, E. , and Persson, K. A. , 2012, “ Revealing the Coupled Cation Interactions Behind the Electrochemical Profile of LixNi0.5Mn1.5O4,” Energy Environ. Sci., 5(3), pp. 6047–6051. [CrossRef]
Yang, J. , Han, X. , Zhang, X. , Cheng, F. , and Chen, J. , 2013, “ Spinel LiNi0.5Mn1.5O4 Cathode for Rechargeable Lithium Ion Batteries: Nano Versus Micro, Ordered Phase (P4332) Versus Disordered Phase (Fd3m),” Nano Res., 6(9), pp. 679–687. [CrossRef]
Cui, X. L. , Li, Y. L. , Li, S. Y. , Li, L. X. , and Liu, J. L. , 2013, “ Nanosized LiNi0.5Mn1.5O4 Spinels Synthesized by a High-Oxidation-State Manganese Sol-Gel Method,” Ionics, 19(11), pp. 1489–1494. [CrossRef]
Hwang, B. J. , Wu, Y. W. , Venkateswarlu, M. , Cheng, M. Y. , and Santhanam, R. , 2009, “ Influence of Synthesis Conditions on Electrochemical Properties of High-Voltage Li1.02Ni0.5Mn1.5O4 Spinel Cathode Material,” J. Power Sources, 193(2), pp. 828–833. [CrossRef]
Deng, J. , Pan, J. , Yao, Q. , Wang, Z. , Zhou, H. , and Rao, G. , 2015, “ Porous Core-Shell LiMn2O4 Microellipsoids as High-Performance Cathode Materials for Li-Ion Batteries,” J. Power Sources, 278, pp. 370–374. [CrossRef]


Grahic Jump Location
Fig. 3

The SEM images of LNMO650 ((a) ×35,000 and (b) ×20,000), LNMO750 ((c) ×35,000 and (d) ×20,000), and LNMO850 ((e) ×35,000 and (f) ×20,000)

Grahic Jump Location
Fig. 2

The X-ray diffraction patterns of LNMO650, LNMO750, and LNMO850

Grahic Jump Location
Fig. 1

Schematic formation process of the LNMO650, LNMO750, and LNMO850, respectively

Grahic Jump Location
Fig. 4

The first charge and discharge bights at 0.2 C at room temperature

Grahic Jump Location
Fig. 5

Cycle performances (a) and mean voltages (b) of LNMO650/Li, LNMO750/Li and LNMO850/Li cells with 0.2 C of discharge rate at room temperature

Grahic Jump Location
Fig. 6

The cycle of the capacity curves at a series of rates from 0.2 C to 3 C

Grahic Jump Location
Fig. 7

The EIS of three samples (a); (b), (d), and (f) reveals linear relationship of |Z′| versus ω−1/2 for LNMO850, LNMO750, and LNMO650, respectively. (c), (e), and (g) are coulomb titration curves for three samples.

Grahic Jump Location
Fig. 8

Cyclic voltammograms of the (a) LNMO850, (b) LNMO750, and (c) LNMO650 at different scan rates, and (d) the plotting of peak current (around 4.1 V) versus square root of the scan rate for different samples



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In