Research Papers

Nanostructured Carbon Electrodes for Increased Power Density in Flow Thermo-Electrochemical Generator Heat Sinks

[+] Author and Article Information
Ali H. Kazim

George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332;
Department of Mechanical Engineering,
University of Engineering and Technology,
Lahore, Lahore 54890, Punjab, Pakistan
e-mail: a.h.kazim@gatech.edu

Baratunde A. Cola

George W. Woodruff School of
Mechanical Engineering,
School of Materials Science and Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: cola@gatech.edu

Manuscript received December 14, 2017; final manuscript received June 30, 2018; published online August 6, 2018. Assoc. Editor: George Nelson.

J. Electrochem. En. Conv. Stor. 16(1), 011007 (Aug 06, 2018) (7 pages) Paper No: JEECS-17-1142; doi: 10.1115/1.4040819 History: Received December 14, 2017; Revised June 30, 2018

Heat is a by-product of all energy conversion mechanisms. Efforts to utilize and dissipate heat remain a challenge for further development and optimization of energy conversion devices. Stationary thermo-electrochemical cell is a low cost method to harvest heat; however, it suffers from low power density. Flow thermo-electrochemical cell (fTEC) heat sink presents itself as a unique solution as it can simultaneously scavenge and remove heat to maintain devices in the operating range. In this work, multiwalled nanotube (MWNT) electrodes have been used and electrode configuration has been changed to maximize the temperature difference over a small interelectrode separation. As a result, power per unit area of fTEC heat sink has been improved by more than seven-fold to 0.36 W/m2.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Kazim, A. H. , Booeshaghi, A. S. , Stephens, S. T. , and Cola, B. A. , 2017, “Thermo-Electrochemical Generator: Energy Harvesting & Thermoregulation for Liquid Cooling Applications,” Sustainable Energy Fuels, 1(6), pp. 1381–1389.
Mahan, G. , Sales, B. , and Sharp, J. , 1997, “Thermoelectric Materials: New Approaches to an Old Problem,” Phys. Today, 50(3), p. 42.
Chen, G. , Dresselhaus, M. , Dresselhaus, G. , Fleurial, J.-P. , and Caillat, T. , 2013, “Recent Developments in Thermoelectric Materials,” Int. Mater. Rev., 48(1), pp. 45–66.
Bonetti, M. , Nakamae, S. , Roger, M. , and Guenoun, P. , 2011, “Huge Seebeck Coefficients in Nonaqueous Electrolytes,” J. Chem. Phys., 134(11), pp. 1–9. [CrossRef]
Mua, Y. , and Quickenden , 1996, “Power Conversion Efficiency, Electrode Separation, and Overpotential in the Ferricyanide/Ferrocyanide Thermogalvanic Cell,” J. Electrochem. Soc., 143(8), p. 2558. [CrossRef]
Abraham, T. J. , MacFarlane, D. R. , Baughman, R. H. , Li, N. , Chen, Y. , and Pringle, J. M. , 2013, “Protic Ionic Liquid-Based Thermoelectrochemical Cells for the Harvesting of Waste Heat,” MRS Proceedings, 1575, pp. mrss13–1575-vv04 -08. [CrossRef]
Quickenden, T. , and Vernon, C. , 1986, “Thermogalvanic Conversion of Heat to Electricity,” Sol. Energy, 36(1), pp. 63–72. [CrossRef]
Debethune, A. J. , Licht, T. S. , and Swendeman, N. , 1959, “The Temperature Coefficients of Electrode Potentials—The Isothermal and Thermal Coefficients—The Standard Ionic Entropy of Electrochemical Transport of the Hydrogen Ion,” J. Electrochem. Soc., 106(7), pp. 616–625. [CrossRef]
Yee, E. L. , Cave, R. J. , Guyer, K. L. , Tyma, P. D. , and Weaver, M. J. , 1979, “A Survey of Ligand Effects Upon the Reaction Entropies of Some Transition Metal Redox Couples,” J. Am. Chem. Soc., 101(22), pp. 1131–1137. [CrossRef]
Hupp, J. T. , and Weaver, M. J. , 1984, “Solvent, Ligand, and Ionic Charge Effects on Reaction Entropies for Simple Transition-Metal Redox Couples,” Inorg. Chem., 23(22), pp. 3639–3644. [CrossRef]
Hornut, J. , and Storck, A. , 1991, “Experimental and Theoretical Analysis of a Thermogalvanic Undivided Flow Cell With Two Aqueous Electrolytes at Different Temperatures,” J. Appl. Electrochem., 21(12), pp. 1103–1113. [CrossRef]
Josserand, J. , Devaud, V. , Lagger, G. , Jensen, H. , and Girault, H. H. , 2004, “Hydrovoltaic Cells—Part II: Thermogalvanic Cells and Numerical Simulations of Thermal Diffusion Potentials,” J. Electroanal. Chem., 565(1), pp. 65–75. [CrossRef]
Armand, M. , Endres, F. , MacFarlane, D. R. , Ohno, H. , and Scrosati, B. , 2009, “Ionic-Liquid Materials for the Electrochemical Challenges of the Future,” Nat. Mater., 8(8), pp. 621–629. [CrossRef] [PubMed]
MacFarlane, D. R. , Forsyth, M. , Howlett, P. C. , Kar, M. , Passerini, S. , Pringle, J. M. , Ohno, H. , Watanabe, M. , Yan, F. , Zheng, W. , and Zhang, S. , 2016, “Ionic Liquids and Their Solid-State Analogues as Materials for Energy Generation and Storage,” Nat. Rev. Mater., 1(2), p. 15005. [CrossRef]
Kim, T. , Lee, J. S. , Lee, G. , Yoon, H. , Yoon, J. , Kang, T. J. , and Kim, Y. H. , 2017, “High Thermopower of Ferri/Ferrocyanide Redox Couple in Organic-Water Solutions,” Nano Energy, 31, pp. 160–167. [CrossRef]
Zhou, H. , Yamada, T. , and Kimizuka, N. , 2016, “Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host–Guest Complexation and Salt-Induced Crystallization,” J. Am. Chem. Soc., 138(33), pp. 10502–10507. [CrossRef] [PubMed]
Abraham, T. J. , MacFarlane, D. R. , and Pringle, J. M. , 2011, “Seebeck Coefficients in Ionic Liquids–Prospects for Thermo-Electrochemical Cells,” Chem. Commun., 47(22), pp. 6260–6262. [CrossRef]
Salazar, P. F. , Stephens, S. T. , Kazim, A. H. , Pringle, J. , and Cola, B. A. , 2014, “Enhanced Thermo-Electrochemical Power Using Carbon Nanotube Additives in Ionic Liquid Redox Electrolytes,” J. Mater. Chem. A, 2(48), pp. 20676–20682. [CrossRef]
Salazar, P. F. , Chan, K. J. , Stephens, S. T. , and Cola, B. A. , 2014, “Enhanced Electrical Conductivity of Imidazolium-Based Ionic Liquids Mixed With Carbon Nanotubes: A Spectroscopic Study,” J. Electrochem. Soc., 161(9), pp. H481–H486. [CrossRef]
Kazim, A. H. , and Cola, B. A. , 2016, “Electrochemical Characterization of Carbon Nanotube and Poly (3, 4-Ethylenedioxythiophene)-Poly (Styrenesulfonate) Composite Aqueous Electrolyte for Thermo-Electrochemical Cells,” J. Electrochem. Soc., 163(8), pp. F867–F871. [CrossRef]
Hu, R. , Cola, B. A. , Haram, N. , Barisci, J. N. , Lee, S. , Stoughton, S. , Wallace, G. , Too, C. , Thomas, M. , Gestos, A. , Dela Cruz, M. E. , Ferraris, J. P. , Zakhidov, A. A. , and Baughman, R. H. , 2010, “Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell,” Nano Lett., 10(3), pp. 838–846. [CrossRef] [PubMed]
Romano, M. S. , Gambhir, S. , Razal, J. M. , Gestos, A. , Wallace, G. G. , and Chen, J. , 2012, “Novel Carbon Materials for Thermal Energy Harvesting,” J. Therm. Anal. Calorim., 109(3), pp. 1229–1235. [CrossRef]
Im, H. , Kim, T. , Song, H. , Choi, J. , Park, J. S. , Ovalle-Robles, R. , Yang, H. D. , Kihm, K. D. , Baughman, R. H. , Lee, H. H. , and Kang, T. J. , 2016, “High-Efficiency Electrochemical Thermal Energy Harvester Using Carbon Nanotube Aerogel Sheet Electrodes,” Nat. Commun., 7, p. 10600.
Romano, M. S. , Li, N. , Antiohos, D. , Razal, J. M. , Nattestad, A. , Beirne, S. , Fang, S. , Chen, Y. , Jalili, R. , Wallace, G. G. , and Baughman, R. , 2013, “Carbon Nanotube–Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications,” Adv. Mater., 25(45), pp. 6602–6606. [CrossRef] [PubMed]
Kang, T. J. , Fang, S. , Kozlov, M. E. , Haines, C. S. , Li, N. , Kim, Y. H. , Chen, Y. , and Baughman, R. H. , 2012, “Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters,” Adv. Funct. Mater., 22(3), pp. 477–489. [CrossRef]
Im, H. , Kang, T. J. , Kim, D. W. , and Kim, Y. H. , 2012, “Development of Thin-Film Thermo-Electrochemical Cell for Harvesting Waste Thermal Energy,” J. Korean Soc. Aeronaut. Space Sci., 40(11), pp. 1010–1015.
Gunawan, A. , Li, H. , Lin, C.-H. , Buttry, D. A. , Mujica, V. , Taylor, R. A. , Prasher, R. S. , and Phelan, P. E. , 2014, “The Amplifying Effect of Natural Convection on Power Generation of Thermogalvanic Cells,” Int. J. Heat Mass Transfer, 78, pp. 423–434. [CrossRef]
Zhang, L. , Kim, T. , Li, N. , Kang, T. J. , Chen, J. , Pringle, J. M. , Zhang, M. , Kazim, A. H. , Fang, S. , Haines, C. , and Al-Masri, D. , 2017, “High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low-Grade Thermal Energy,” Adv. Mater., 29(12), p. 1605652.
Gunawan, A. , Fette, N. W. , and Phelan, P. E. , 2015, “Thermogalvanic Waste Heat Recovery System in Automobiles,” ASME Paper No. POWER2015-49094.
Uhl, S. , Laux, E. , Journot, T. , Jeandupeux, L. , Charmet, J. , and Keppner, H. , 2014, “Development of Flexible Micro-Thermo-Electrochemical Generators Based on Ionic Liquids,” J. Electron. Mater., 43(10), pp. 3758–3764. [CrossRef]
Im, H. , Moon, H. G. , Lee, J. S. , Chung, I. Y. , Kang, T. J. , and Kim, Y. H. , 2014, “Flexible Thermocells for Utilization of Body Heat,” Nano Res., 7(4), pp. 443–452. [CrossRef]
Kazim, A. H. , 2017, “Novel Electrolytes and System Designs for Thermo-Electrochemical Cells,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA. https://smartech.gatech.edu/handle/1853/58702
Boccaccini, A. R. , Cho, J. , Roether, J. A. , Thomas, B. J. , Minay, E. J. , and Shaffer, M. S. , 2006, “Electrophoretic Deposition of Carbon Nanotubes,” Carbon, 44(15), pp. 3149–3160. [CrossRef]
Qian, W. , Cao, M. , Xie, F. , and Dong, C. , 2016, “Thermo-Electrochemical Cells Based on Carbon Nanotube Electrodes by Electrophoretic Deposition,” Nano-Micro Lett., 8(3), pp. 240–246.
Talin, A. A. , Dean, K. A. , O'rourke, S. M. , Coll, B. F. , Stainer, M. , and Subrahmanyan, R. , 2005, “Fed Cathode Structure Using Electrophoretic Deposition and Method of Fabrication,” U.S. Patent No. 6,902,658.
Oh, S. , Zhang, J. , Cheng, Y. , Shimoda, H. , and Zhou, O. , 2004, “Liquid-Phase Fabrication of Patterned Carbon Nanotube Field Emission Cathodes,” Appl. Phys. Lett., 84(19), pp. 3738–3740. [CrossRef]
Zhao, H. , Song, H. , Li, Z. , Yuan, G. , and Jin, Y. , 2005, “Electrophoretic Deposition and Field Emission Properties of Patterned Carbon Nanotubes,” Appl. Surf. Sci., 251(1–4), pp. 242–244. [CrossRef]
Chen, L. , Xie, H. , and Yu, W. , 2012, “Multi-Walled Carbon Nanotube/Silver Nanoparticles Used for Thermal Transportation,” J. Mater. Sci., 47(14), pp. 5590–5595. [CrossRef]
Dong, R.-X. , Liu, C.-T. , Huang, K.-C. , Chiu, W.-Y. , Ho, K.-C. , and Lin, J.-J. , 2012, “Controlling Formation of Silver/Carbon Nanotube Networks for Highly Conductive Film Surface,” ACS Appl. Mater. Interfaces, 4(3), pp. 1449–1455. [CrossRef] [PubMed]
Qian, W. , Li, M. , Chen, L. , Zhang, J. , and Dong, C. , 2015, “Improving Thermo-Electrochemical Cell Performance by Constructing Ag-MgO-CNTs Nanocomposite Electrodes,” RSC Adv., 5(119), pp. 97982–97987.
Bae, K. M. , Yang, H. D. , Tufa, L. T. , and Kang, T. J. , 2015, “Thermobattery Based on CNT Coated Carbon Textile and Thermoelectric Electrolyte,” Int. J. Precis. Eng. Manuf., 16(7), pp. 1245–1250. [CrossRef]
Yang, H. D. , Tufa, L. T. , Bae, K. M. , and Kang, T. J. , 2015, “A Tubing Shaped, Flexible Thermal Energy Harvester Based on a Carbon Nanotube Sheet Electrode,” Carbon, 86, pp. 118–123. [CrossRef]
Salazar, P. F. , Kumar, S. , and Cola, B. A. , 2012, “Nitrogen- and Boron-Doped Carbon Nanotube Electrodes in a Thermo-Electrochemical Cell,” J. Electrochem. Soc., 159(5), p. B483. [CrossRef]
Abraham, T. J. , Tachikawa, N. , MacFarlane, D. R. , and Pringle, J. M. , 2014, “Investigation of the Kinetic and Mass Transport Limitations in Thermoelectrochemical Cells With Different Electrode Materials,” Phys. Chem. Chem. Phys., 16(6), pp. 2527–2532. [CrossRef] [PubMed]
Kobayashi, W. , Kinoshita, A. , and Moritomo, Y. , 2015, “Seebeck Effect in a Battery-Type Thermocell,” Appl. Phys. Lett., 107(7), p. 73906.
Bonetti, M. , Nakamae, S. , Huang, B. T. , Salez, T. J. , Wiertel-Gasquet, C. , and Roger, M. , 2015, “Thermoelectric Energy Recovery at Ionic-Liquid/Electrode Interface,” J. Chem. Phys., 142(24), p. 244708. [CrossRef] [PubMed]
Lee, S. W. , Yang, Y. , Lee, H.-W. , Ghasemi, H. , Kraemer, D. , Chen, G. , and Cui, Y. , 2014, “An Electrochemical System for Efficiently Harvesting Low-Grade Heat Energy,” Nat. Commun., 5(1), p. 3942.
Hirai, T. , Shindo, K. , and Ogata, T. , 1996, “Charge and Discharge Characteristics of Thermochargeable Galvanic Cells With an [Fe (CN)6]4-/[Fe (CN)6]3− Redox Couple,” J. Electrochem. Soc., 143(4), pp. 1305–1313. [CrossRef]


Grahic Jump Location
Fig. 8

fTEC heat sink performance for electrodes on the top plates only (circles), top and bottom plates (squares) as a function of flow rate: (a) Voc is the open circuit voltage measured, (b) Isc is the short circuit current, and (c) Pmax is the maximum power

Grahic Jump Location
Fig. 1

The schematic shows block diagram of fTEC. The schematic shows the positioning of the electrode terminals ET1, EB1 and ET2, where T stands for electrodes on top plate and B stands for electrodes on the bottom plate. The heat is supplied (Qin) at the bottom of fTEC. The electrolyte flows from left to right.

Grahic Jump Location
Fig. 2

Temperature profile inside the cold plate as a function of length (x). Th is the temperature of the bottom plate where the heat flux is provided by heater, Tm,o is the mean exit temperature at the outlet, Tm is the mean temperature of the fluid as it flows through the channel, and Tc is the temperature of top plate exposed to ambient. Temperature potential with electrodes inserted on the top plate is Tm,o−Tm, represented by the solid shaded region. Temperature with electrodes located on the top and bottom electrode is Th − Tc represented by the pattern shaded region in addition to solid shaded region.

Grahic Jump Location
Fig. 3

COMSOL simulation, power comparison between electrode on just the top plate (circles) versus those on both the top and bottom plate (squares)

Grahic Jump Location
Fig. 4

CV scan of the graphite (squares) and MWNT buckypaper (circles) electrodes

Grahic Jump Location
Fig. 5

SEM images of graphite electrodes (a) scale bars correspond to 300 μm, (b) scale bars correspond to 20 μm, and (c) scale bars correspond to 2 μm

Grahic Jump Location
Fig. 6

SEM images of MWNT buckypaper electrodes (a) cross-sectional view with scale bar correspond to 1 μm and (b) cross-sectional view with scale bar correspond to 200 nm

Grahic Jump Location
Fig. 7

The schematic shows the positioning of the electrodes ET1, EB1, and ET2, where T stands for electrodes on top plate and B stands for electrodes on the bottom plate. The heat is supplied (Qin) at the bottom of fTEC. The electrolyte flows from left to right.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In