Research Papers

Micro Silicon–Graphene–Carbon Nanotube Anode for Full Cell Lithium-ion Battery

[+] Author and Article Information
Xianfeng Gao

Department of Mechanical Engineering,
University of Wisconsin,
Milwaukee, WI 53211
e-mail: xianfengpku@gmail.com

Fenfen Wang

Department of Mechanical and
Aerospace Engineering,
Case Western Reserve University,
Cleveland, OH 44106
e-mail: fxw127@case.edu

Sam Gollon

Department of Mechanical Engineering,
University of Wisconsin,
Milwaukee, WI 53211
e-mail: sdgollon@uwm.edu

Chis Yuan

Department of Mechanical and
Aerospace Engineering,
Case Western Reserve University,
Cleveland, OH 44106
e-mail: chris.yuan@case.edu

1Corresponding author.

Manuscript received April 1, 2018; final manuscript received July 1, 2018; published online August 6, 2018. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 16(1), 011009 (Aug 06, 2018) (6 pages) Paper No: JEECS-18-1030; doi: 10.1115/1.4040826 History: Received April 01, 2018; Revised July 01, 2018

An electrochemically stable hybrid structure material consisting of porous silicon (Si) nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxide (rGO) is developed as an anode material (Si/rGO/CNT) for full cell lithium-ion batteries (LIBs). In the developed hybrid material, the rGO provides a robust matrix with sufficient void space to accommodate the volume change of Si during lithiation/delithiation and a good electric contact. CNTs act as a mechanically stable and electrically conductive support to enhance the overall mechanical strength and conductivity. The developed Si/rGO/CNT composite anode has been first tested in half cell and then in full cell lithium-ion batteries. In half cell, the composite anode shows a high reversible capacity of 1100 mAh g−1 with good capacity retention over 500 cycles when cycled at 1 A g−1. In a full cell lithium-ion battery paired up with LiNi1/3Mn1/3Co1/3O2 (NMC) cathodes, the composite anode shows a specific charge capacity of 161.4 mAh g−1 and a discharge capacity of 152.8 mAh g−1, respectively, with a Coulombic efficiency of 94.7%.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Philippe, B. , Dedryvère, R. , Gorgoi, M. , Rensmo, H. , Gonbeau, D. , and Edström, K. , 2013, “Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study,” J. Am. Chem. Soc., 135(26), pp. 9829–9842. [CrossRef] [PubMed]
Chan, C. K. , Peng, H. , Liu, G. , McIlwrath, K. , Zhang, X. F. , Huggins, R. A. , and Cui, Y. , 2008, “High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nano, 3(1), pp. 31–35. [CrossRef]
Teki, R. , Datta, M. K. , Krishnan, R. , Parker, T. C. , Lu, T. M. , Kumta, P. N. , and Koratkar, N. , 2009, “Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries,” Small, 5(20), pp. 2236–2242. [CrossRef] [PubMed]
Wu, H. , and Cui, Y. , 2012, “Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries,” Nano Today, 7(5), pp. 414–429. [CrossRef]
Kovalenko, I. , Zdyrko, B. , Magasinski, A. , Hertzberg, B. , Milicev, Z. , Burtovyy, R. , Luzinov, I. , and Yushin, G. , 2011, “A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries,” Science, 334(6052), pp. 75–79. [CrossRef] [PubMed]
Chockla, A. M. , Harris, J. T. , Akhavan, V. A. , Bogart, T. D. , Holmberg, V. C. , Steinhagen, C. , Mullins, C. B. , Stevenson, K. J. , and Korgel, B. A. , 2011, “Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material,” J. Am. Chem. Soc., 133(51), pp. 20914–20921. [CrossRef] [PubMed]
Ge, M. , Rong, J. , Fang, X. , and Zhou, C. , 2012, “Porous Doped Silicon Nanowires for Lithium Ion Battery Anode With Long Cycle Life,” Nano Lett., 12(5), pp. 2318–2323. [CrossRef] [PubMed]
Jing, S. , Jiang, H. , Hu, Y. , and Li, C. , 2014, “Directly Grown Si Nanowire Arrays on Cu Foam With a Coral-like Surface for Lithium-Ion Batteries,” Nanoscale, 6(23), pp. 14441–14445. [CrossRef] [PubMed]
Park, M. H. , Kim, M. G. , Joo, J. , Kim, K. , Kim, J. , Ahn, S. , Cui, Y. , and Cho, J. , 2009, “Silicon Nanotube Battery Anodes,” Nano Lett., 9(11), pp. 3844–3847. [CrossRef] [PubMed]
Yao, Y. , McDowell, M. T. , Ryu, I. , Wu, H. , Liu, N. , Hu, L. , Nix, W. D. , and Cui, Y. , 2011, “Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes With Long Cycle Life,” Nano Lett., 11(7), pp. 2949–2954. [CrossRef] [PubMed]
Zhao, Y. , Liu, X. , Li, H. , Zhai, T. , and Zhou, H. , 2012, “Hierarchical Micro/Nano Porous Silicon Li-Ion Battery Anodes,” Chem. Commun., 48(42), pp. 5079–5081. [CrossRef]
Chen, X. , Li, X. , Ding, F. , Xu, W. , Xiao, J. , Cao, Y. , Meduri, P. , Liu, J. , Graff, G. L. , and Zhang, J. G. , 2012, “Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes,” Nano Lett., 12(8), pp. 4124–4130. [CrossRef] [PubMed]
Zhong, Y. , Peng, F. , Bao, F. , Wang, S. , Ji, X. , Yang, L. , Su, Y. , Lee, S.-T. , and He, Y. , 2013, “Large-Scale Aqueous Synthesis of Fluorescent and Biocompatible Silicon Nanoparticles and Their Use as Highly Photostable Biological Probes,” J. Am. Chem. Soc., 135(22), pp. 8350–8356. [CrossRef] [PubMed]
Magasinski, A. , Dixon, P. , Hertzberg, B. , Kvit, A. , Ayala, J. , and Yushin, G. , 2010, “High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach,” Nat. Mater., 9(4), pp. 353–358. [CrossRef] [PubMed]
Deng, J. , Ji, H. , Yan, C. , Zhang, J. , Si, W. , Baunack, S. , Oswald, S. , Mei, Y. , and Schmidt, O. G. , 2013, “Naturally Rolled-Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithium-Ion Batteries With Remarkable Cycling Performance,” Angew. Chem. Int. Ed., 52(8), pp. 2326–2330. [CrossRef]
Wu, H. , Zheng, G. , Liu, N. , Carney, T. J. , Yang, Y. , and Cui, Y. , 2012, “Engineering Empty Space Between Si Nanoparticles for Lithium-Ion Battery Anodes,” Nano Lett., 12(2), pp. 904–909. [CrossRef] [PubMed]
Cui, L. F. , Hu, L. , Choi, J. W. , and Cui, Y. , 2010, “Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries,” ACS Nano, 4(7), pp. 3671–3678. [CrossRef] [PubMed]
Jung, D. S. , Hwang, T. H. , Park, S. B. , and Choi, J. W. , 2013, “Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries,” Nano Lett., 13(5), pp. 2092–2097. [CrossRef] [PubMed]
Du, C. , Chen, M. , Wang, L. , and Yin, G. , 2011, “Covalently-Functionalizing Synthesis of Si@C Core–Shell Nanocomposites as High-Capacity Anode Materials for Lithium-Ion Batteries,” J. Mater. Chem., 21(39), pp. 15692–15697. [CrossRef]
Jeong, H. M. , Lee, S. Y. , Shin, W. H. , Kwon, J. H. , Shakoor, A. , Hwang, T. H. , Kim, S. Y. , Kong, B.-S. , Seo, J.-S. , Lee, Y. M. , Kang, J. K. , and Choi, J. W. , 2012, “Silicon@Porous Nitrogen-Doped Carbon Spheres Through a Bottom-Up Approach Are Highly Robust Lithium-Ion Battery Anodes,” RSC Adv., 2(10), pp. 4311–4317. [CrossRef]
Liu, N. , Wu, H. , McDowell, M. T. , Yao, Y. , Wang, C. , and Cui, Y. , 2012, “A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes,” Nano Lett., 12(6), pp. 3315–3321. [CrossRef] [PubMed]
Gohier, A. , Laïk, B. , Kim, K.-H. , Maurice, J.-L. , Pereira-Ramos, J.-P. , Cojocaru, C. S. , and Van, P. T. , 2012, “High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries,” Adv. Mater., 24(19), pp. 2592–2597. [CrossRef] [PubMed]
Wang, B. , Li, X. , Zhang, X. , Luo, B. , Jin, M. , Liang, M. , Dayeh, S. A. , Picraux, S. T. , and Zhi, L. , 2013, “Adaptable Silicon–Carbon Nanocables Sandwiched Between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes,” ACS Nano, 7(2), pp. 1437–1445. [CrossRef] [PubMed]
Zhou, X. , Cao, A.-M. , Wan, L.-J. , and Guo, Y.-G. , 2012, “Spin-Coated Silicon Nanoparticle/Graphene Electrode as a Binder-Free Anode for High-Performance Lithium-Ion Batteries,” Nano Res., 5(12), pp. 845–853. [CrossRef]
Tang, H. , Tu, J.-P. , Liu, X.-Y. , Zhang, Y.-J. , Huang, S. , Li, W.-Z. , Wang, X.-L. , and Gu, C.-D. , 2014, “Self-Assembly of Si/Honeycomb Reduced Graphene Oxide Composite Film as a Binder-Free and Flexible Anode for Li-Ion Batteries,” J. Mater. Chem. A, 2(16), pp. 5834–5840. [CrossRef]
Wu, P. , Wang, H. , Tang, Y. , Zhou, Y. , and Lu, T. , 2014, “Three-Dimensional Interconnected Network of Graphene-Wrapped Porous Silicon Spheres: In Situ Magnesiothermic-Reduction Synthesis and Enhanced Lithium-Storage Capabilities,” ACS Appl. Mater. Interfaces, 6(5), pp. 3546–3552. [CrossRef] [PubMed]
Jing, S. , Jiang, H. , Hu, Y. , and Li, C. , 2014, “Graphene Supported Mesoporous Single Crystal Silicon on Cu Foam as a Stable Lithium-Ion Battery Anode,” J. Mater. Chem. A, 2(39), pp. 16360–16364. [CrossRef]
Xu, C. , Xu, B. , Gu, Y. , Xiong, Z. , Sun, J. , and Zhao, X. S. , 2013, “Graphene-Based Electrodes for Electrochemical Energy Storage,” Energy Environ. Sci., 6(5), pp. 1388–1414. [CrossRef]
Chen, Y. , Di, X. , Ma, C. , Zhu, C. , Gao, P. , Li, J. , Sun, C. , and Ouyang, Q. , 2013, “Graphene–MoO2 Hierarchical Nanoarchitectures: In Situ Reduction Synthesis and High Rate Cycling Performance as Lithium-Ion Battery Anodes,” RSC Adv., 3(39), pp. 17659–17663. [CrossRef]
Zhang, Y. , Wang, Y. , Xiong, Z. , Hu, Y. , Song, W. , Huang, Q.-A. , Cheng, X. , Chen, L.-Q. , Sun, C. , and Gu, H. , 2017, “V2O5 Nanowire Composite Paper as a High-Performance Lithium-Ion Battery Cathode,” ACS Omega, 2(3), pp. 793–799. [CrossRef]
Zhang, Y. , Lai, J. , Gong, Y. , Hu, Y. , Liu, J. , Sun, C. , and Wang, Z. L. , 2016, “A Safe High-Performance All-Solid-State Lithium–Vanadium Battery With a Freestanding V2O5 Nanowire Composite Paper Cathode,” ACS Appl. Mater. Interfaces, 8(50), pp. 34309–34316. [CrossRef] [PubMed]
Wepasnick, K. A. , Smith, B. A. , Schrote, K. E. , Wilson, H. K. , Diegelmann, S. R. , and Fairbrother, D. H. , 2011, “Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments,” Carbon, 49(1), pp. 24–36. [CrossRef]
Lee, W. J. , Hwang, T. H. , Hwang, J. O. , Kim, H. W. , Lim, J. , Jeong, H. Y. , Shim, J. , Han, T. H. , Kim, J. Y. , Choi, J. W. , and Kim, S. O. , 2014, “N-Doped Graphitic Self-Encapsulation for High Performance Silicon Anodes in Lithium-Ion Batteries,” Energy Environ. Sci., 7(2), pp. 621–626. [CrossRef]
Li, D. , Muller, M. B. , Gilje, S. , Kaner, R. B. , and Wallace, G. G. , 2008, “Processable Aqueous Dispersions of Graphene Nanosheets,” Nat. Nanotechnol., 3(2), pp. 101–105. [CrossRef] [PubMed]
Eckmann, A. , Felten, A. , Mishchenko, A. , Britnell, L. , Krupke, R. , Novoselov, K. S. , and Casiraghi, C. , 2012, “Probing the Nature of Defects in Graphene by Raman Spectroscopy,” Nano Lett., 12(8), pp. 3925–3930. [CrossRef] [PubMed]
Erickson, K. , Erni, R. , Lee, Z. , Alem, N. , Gannett, W. , and Zettl, A. , 2010, “Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide,” Adv. Mater., 22(40), pp. 4467–4472. [CrossRef] [PubMed]
Chang, J. , Huang, X. , Zhou, G. , Cui, S. , Hallac, P. B. , Jiang, J. , Hurley, P. T. , and Chen, J. , 2014, “Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode,” Adv. Mater., 26(5), pp. 758–764. [CrossRef] [PubMed]
Gao, X. , Li, J. , Xie, Y. , Guan, D. , and Yuan, C. , 2015, “A Multilayered Silicon-Reduced Graphene Oxide Electrode for High Performance Lithium-Ion Batteries,” ACS Appl. Mater. Interfaces, 7(15), pp. 7855–7862. [CrossRef] [PubMed]
Xue, L. , Xu, G. , Li, Y. , Li, S. , Fu, K. , Shi, Q. , and Zhang, X. , 2012, “Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks as Anode Material for Lithium-Ion Batteries,” ACS Appl. Mater. Interfaces, 5(1), pp. 21–25. [CrossRef] [PubMed]
Yin, S. , Zhang, Y. , Kong, J. , Zou, C. , Li, C. M. , Lu, X. , Ma, J. , Boey, F. Y. C. , and Chen, X. , 2011, “Assembly of Graphene Sheets Into Hierarchical Structures for High-Performance Energy Storage,” ACS Nano, 5(5), pp. 3831–3838. [CrossRef] [PubMed]
Hertzberg, B. , Alexeev, A. , and Yushin, G. , 2010, “Deformations in Si−Li Anodes Upon Electrochemical Alloying in Nano-Confined Space,” J. Am. Chem. Soc., 132(25), pp. 8548–8549. [CrossRef] [PubMed]
Li, B. , Yao, F. , Bae, J. J. , Chang, J. , Zamfir, M. R. , Le, D. T. , Pham, D. T. , Yue, H. , and Lee, Y. H. , 2015, “Hollow Carbon Nanospheres/Silicon/Alumina Core-Shell Film as an Anode for Lithium-Ion Batteries,” Sci. Rep., 5(1), p. 7659. [CrossRef] [PubMed]
Liu, N. , Hu, L. , McDowell, M. T. , Jackson, A. , and Cui, Y. , 2011, “Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries,” ACS Nano, 5(8), pp. 6487–6493. [CrossRef] [PubMed]
Holtstiege, F. , Bärmann, P. , Nölle, R. , Winter, M. , and Placke, T. , 2018, “Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges,” Batteries, 4(1), p. 4. [CrossRef]
Xu, N. , Sun, X. , Zhao, F. , Jin, X. , Zhang, X. , Wang, K. , Huang, K. , and Ma, Y. , 2017, “The Role of Pre-Lithiation in Activated Carbon/Li4Ti5O12 Asymmetric Capacitors,” Electrochim. Acta, 236, pp. 443–450. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic of electrode process design and SEM images of the obtained Si/RGO/CNT electrode

Grahic Jump Location
Fig. 2

(a) XRD spectrum, (b) Raman spectrum, and (c) BET test of the Si/rGO/CNT composite

Grahic Jump Location
Fig. 3

(a) Cycling performance of Si/rGO/CNT electrode in half cell, (b) galvanostatic charge/discharge profiles obtained under constant current at 100 mAg−1, and (c) rate performance of Si/rGO/CNT electrode

Grahic Jump Location
Fig. 4

(a) Voltage profile, (b) cycling performance, and (c) columbic efficiency of Si/rGO/CNT electrode in full cell characterization



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In