Research Papers

Microtubular Hard Carbon Derived From Willow Catkins as an Anode Material With Enhanced Performance for Sodium-Ion Batteries

[+] Author and Article Information
Yongqiang Teng

Institute of Electrical Engineering,
Chinese Academy of Sciences,
Beijing 100190, China

Maosong Mo

Institute of Electrical Engineering,
Chinese Academy of Sciences,
Beijing 100190, China;
School of Engineering Science,
University of Chinese Academy of Sciences,
Beijing 100049, China
e-mail: msmo@mail.iee.ac.cn; msmo@ustc.edu

Yuan Li

School of Materials Science and Engineering,
University of Science and Technology Beijing,
Beijing 100083, China

1Corresponding author.

Manuscript received November 20, 2017; final manuscript received July 11, 2018; published online August 20, 2018. Assoc. Editor: San Ping Jiang.

J. Electrochem. En. Conv. Stor. 15(4), 041010 (Aug 20, 2018) (5 pages) Paper No: JEECS-17-1135; doi: 10.1115/1.4040922 History: Received November 20, 2017; Revised July 11, 2018

As a kind of common bio-waste, willow catkin is of no economic value. But it is surprising that it can be an ideal carbonaceous source and bio-template for electrode materials of lithium-ion batteries and supercapacitors. Herein, we demonstrate that microtubular hard carbon can be derived from willow catkins and used as an anode of sodium-ion batteries (SIBs). The sample obtained from carbonization at 1000 °C delivers a high reversible capacity of 210 mAh g−1, good rate capability, and excellent cycling stability (112 mAh g−1 at 1000 mA g−1 after 1600 cycles) due to its unique tubular structure and the N-doping characteristic. The present work affords a new candidate for the production of hard carbon materials with tubular microstructure using natural biomass, and develops a highly promising anode material for SIBs.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Slater, M. D. , Kim, D. , Lee, E. , and Johnson, C. S. , 2013, “Sodium-Ion Batteries,” Adv. Funct. Mater., 23(8), pp. 947–958. [CrossRef]
Yabuuchi, N. , Kubota, K. , Dahbi, M. , and Komaba, S. , 2014, “Research Development on Sodium-Ion Batteries,” Chem. Rev., 114(23), pp. 11636–11682. [CrossRef] [PubMed]
Kundu, D. , Talaie, E. , Duffort, V. , and Nazar, L. F. , 2015, “The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage,” Angew. Chem. Int. Edit., 54(11), pp. 3431–3448. [CrossRef]
Luo, W. , Shen, F. , Bommier, C. , Zhu, H. , Ji, X. , and Hu, L. , 2016, “Na-Ion Battery Anodes: Materials and Electrochemistry,” Acc. Chem. Res., 49(2), pp. 231–240. [CrossRef] [PubMed]
Zhang, Q. , Wang, W. , Wang, Y. , Feng, P. , Wang, K. , Cheng, S. , and Jiang, K. , 2016, “Controllable Construction of 3D-Skeleton-Carbon Coated Na3V2(PO4)3 for High-Performance Sodium Ion Battery Cathode,” Nano Energy, 20, pp. 11–19. [CrossRef]
Law, M. , Ramar, V. , and Balaya, P. , 2017, “Na2MnSiO4 as an Attractive High Capacity Cathode Material for Sodium-Ion Battery,” J. Power Sources, 359, pp. 277–284. [CrossRef]
Chang, C. , Li, Y. , He, W. , Li, G. , Guo, W. , Zhu, P. , Yao, M. , and Feng, J. , 2017, “NaVPO4F Prepared Under Air as a Cathode Material for Sodium-Ion Batteries,” Mater. Lett., 209, pp. 82–85. [CrossRef]
Ge, P. , and Fouletier, M. , 1988, “Electrochemical Intercalation of Sodium in Graphite,” Solid State Ionics, 28, pp. 1172–1175. [CrossRef]
Stevens, D. A. , and Dahn, J. R. , 2001, “The Mechanisms of Lithium and Sodium Insertion in Carbon Materials,” J. Electrochem. Soc, 148(8), pp. A803–A811. [CrossRef]
Liu, Y. , Cheng, Z. , Sun, H. , Arandiyan, H. , Li, J. , and Ahmad, M. , 2015, “Mesoporous Co3O4 Sheets/3D Graphene Networks Nanohybrids for High-Performance Sodium-Ion Battery Anode,” J. Power Sources, 273, pp. 878–884. [CrossRef]
Dirican, M. , Lu, Y. , Ge, Y. , Yildiz, O. , and Zhang, X. , 2015, “Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material,” ACS Appl. Mater. Interfaces, 7(33), pp. 18387–18396. [CrossRef] [PubMed]
Zhang, Y. , Zhu, P. , Huang, L. , Xie, J. , Zhang, S. , Cao, G. , and Zhao, X. , 2015, “Few-Layered SnS2 on Few-Layered Reduced Graphene Oxide as Na-Ion Battery Anode With Ultralong Cycle Life and Superior Rate Capability,” Adv. Funct. Mater., 25(3), pp. 481–489. [CrossRef]
Su, D. , Dou, S. , and Wang, G. , 2015, “Ultrathin MoS2 Nanosheets as Anode Materials for Sodium-Ion Batteries With Superior Performance,” Adv. Energy Mater., 5(6), p. 1401205. [CrossRef]
Liu, S. L. , Huang, J. , Liu, J. , Lei, M. , Li, S. , and Liu, G. , 2016, “Porous Mo2N Nanobelts as a New Anode Material for Sodium-Ion Batteries,” Mater. Lett., 172, pp. 56–59. [CrossRef]
Li, X. , Hector, A. L. , Owen, J. R. , and Shah, S. I. U. , 2016, “Evaluation of Nanocrystalline Sn3N4 Derived From Ammonolysis of Sn(NEt2)4 as a Negative Electrode Material for Li-Ion and Na-Ion Batteries,” J. Mater. Chem. A, 4(14), pp. 5081–5087. [CrossRef]
Liu, Y. , Zhang, N. , Jiao, L. , Tao, Z. , and Chen, J. , 2015, “Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries,” Adv. Funct. Mater., 25(2), pp. 214–220. [CrossRef]
Wang, X. , Fan, L. , Gong, D. , Zhu, J. , Zhang, Q. , and Lu, B. , 2016, “Core-Shell Ge@Graphene@TiO2 Nanofibers as a High-Capacity and Cycle-Stable Anode for Lithium and Sodium Ion Battery,” Adv. Funct. Mater., 26(7), pp. 1104–1111. [CrossRef]
Balogun, M. S. , Luo, Y. , Qiu, W. , Liu, P. , and Tong, Y. , 2016, “A Review of Carbon Materials and Their Composites With Alloy Metals for Sodium Ion Battery Anodes,” Carbon, 98, pp. 162–178. [CrossRef]
Li, Y. , Hu, Y. S. , Titirici, M. M. , Chen, L. , and Huang, X. , 2016, “Hard Carbon Microtubes Made From Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries,” Adv. Energy Mater., 6(18), p. 1600659. [CrossRef]
Yin, L. , Wang, Y. , Han, C. , Kang, Y. M. , Ma, X. , Xie, H. , and Wu, M. , 2016, “Self-Assembly of Disordered Hard Carbon/Graphene Hybrid for Sodium-Ion Batteries,” J. Power Sources, 305, pp. 156–160. [CrossRef]
Xu, D. , Chen, C. , Xie, J. , Zhang, B. , Miao, L. , Cai, J. , Huang, Y. , and Zhang, L. , 2016, “A Hierarchical N/S-Codoped Carbon Anode Fabricated Facilely From Cellulose/Polyaniline Microspheres for High-Performance Sodium-Ion Batteries,” Adv. Energy Mater., 6(6), p. 1501929. [CrossRef]
Teng, Y. , Mo, M. , and Lv, P. , 2017, “MoS2 Nanosheets Grown on N-Doped Carbon Micro-Tubes Derived From Willow Catkins as a High-Performance Anode Material for Lithium-Ion Batteries,” Mater. Lett., 209, pp. 396–399. [CrossRef]
Li, Y. , Wang, G. , Wei, T. , Fan, Z. , and Yan, P. , 2016, “Nitrogen and Sulfur Co-Doped Porous Carbon Nanosheets Derived From Willow Catkin for Supercapacitors,” Nano Energy, 19, pp. 165–175. [CrossRef]
Teng, Y. , Zhao, H. , Zhang, Z. , Zhao, L. , Zhang, Y. , Li, Z. , Xia, Q. , Du, Z. , and Świerczek, K. , 2017, “MoS2 Nanosheets Vertically Grown on Reduced Graphene Oxide Via Oxygen Bonds With Carbon Coating as Ultrafast Sodium Ion Batteries Anodes,” Carbon, 119, pp. 91–100. [CrossRef]
Wang, Z. , Qie, L. , Yuan, L. , Zhang, W. , Hu, X. , and Huang, Y. , 2013, “Functionalized N-Doped Interconnected Carbon Nanofibers as an Anode Material for Sodium-Ion Storage With Excellent Performance,” Carbon, 55, pp. 328–334. [CrossRef]
Gu, X. , Yue, J. , Chen, L. , Liu, S. , Xu, H. , Yang, J. , Qian, Y. , and Zhao, X. , 2015, “Coaxial MnO/N-Doped Carbon Nanorods for Advanced Lithium-Ion Battery Anodes,” J. Mater. Chem. A, 3(3), pp. 1037–1041. [CrossRef]
Yang, J. , Zhou, X. , Wu, D. , Zhao, X. , and Zhou, Z. , 2017, “S-Doped N-Rich Carbon Nanosheets With Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries,” Adv. Mater., 29, p. 1604108. [CrossRef]
Qie, L. , Chen, W. M. , Wang, Z. H. , Shao, Q. G. , Li, X. , Yuan, L. X. , Hu, X. L. , Zhang, W. X. , and Huang, Y. H. , 2012, “Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries With a Superhigh Capacity and Rate Capability,” Adv. Mater., 24(15), pp. 2047–2050. [CrossRef] [PubMed]
Wenzel, S. , Hara, T. , Janek, J. , and Adelhelm, P. , 2011, “Room-Temperature Sodium-Ion Batteries: Improving the Rate Capability of Carbon Anode Materials by Templating Strategies,” Energy Environ. Sci., 4(9), pp. 3342–3345. [CrossRef]
Li, W. , Zeng, L. , Yang, Z. , Gu, L. , Wang, J. , Liu, X. , Cheng, J. , and Yu, Y. , 2014, “Free-Standing and Binder-Free Sodium-Ion Electrodes With Ultralong Cycle Life and High Rate Performance Based on Porous Carbon Nanofibers,” Nanoscale, 6(2), pp. 693–698.
Tang, K. , Fu, L. , White, R. J. , Yu, L. , Titirici, M. M. , Antonietti, M. , and Maier, J. , 2012, “Hollow Carbon Nanospheres With Superior Rate Capability for Sodium-Based Batteries,” Adv. Energy Mater., 2(7), pp. 873–877. [CrossRef]
Ding, J. , Wang, H. L. , Li, Z. , Kohandehghan, A. , Cui, K. , Xu, Z. W. , Zahiri, B. , Tan, X. H. , Lotfabad, E. M. , Olsen, B. C. , and Mitlin, D. , 2013, “Carbon Nanosheet Frameworks Derived From Peat Moss as High Performance Sodium Ion Battery Anodes,” ACS Nano, 7(12), p. 11004. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) X-ray powder diffraction patterns, insets of (a): optical photographs of willow catkin (left) and NCT-700 (right), SEM image of willow catkin (top) and (b) Raman spectra of the samples at 700 °C and 1000 °C

Grahic Jump Location
Fig. 2

Typical XPS survey spectrum (a) and corresponding N 1 s XPS spectrum (b) of the NCT-1000 sample

Grahic Jump Location
Fig. 3

Field-emission scanning electron microscope images of NCT-700 (a) and (b) and NCT-1000 (c); TEM images of NCT-700 (d) and (e), and NCT-1000 (f)

Grahic Jump Location
Fig. 4

Cyclic voltammogram curves of the initial three cycles for (a) NCT-700 and (b) NCT-1000

Grahic Jump Location
Fig. 5

(a) Discharge-charge profiles and (b) cycle performances at 100 mA g−1 of NCT-700 and NCT-1000 electrodes

Grahic Jump Location
Fig. 6

Rate capabilities of NCT-700 and NCT-1000 electrodes

Grahic Jump Location
Fig. 7

Cycle performance at 1 A g−1 of NCT-1000 electrode



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In