Research Papers

Effect of Niobium Doping on Electrochemical Properties of Microwave Synthesized Carbon Coated Nanolithium Iron Phosphate for High Rate Underwater Applications

[+] Author and Article Information
A. Srinivas Kumar

Naval Science and Technological Laboratory,
Vigyan Nagar,
Visakhapatnam 530027, India
e-mail: adapakaeskay@yahoo.com

T. V. S. L. Satyavani, M. Senthilkumar

Naval Science and Technological Laboratory,
Vigyan Nagar,
Visakhapatnam 530027, India

P. S. V. Subba Rao

Department of Physics,
Andhra University,
Visakhapatnam 530003, India

1Corresponding author.

Manuscript received June 19, 2018; final manuscript received September 4, 2018; published online October 19, 2018. Assoc. Editor: Kevin Huang.

J. Electrochem. En. Conv. Stor. 16(2), 021002 (Oct 19, 2018) (8 pages) Paper No: JEECS-18-1063; doi: 10.1115/1.4041454 History: Received June 19, 2018; Revised September 04, 2018

Lithium iron phosphate (LiFePO4) for lithium-ion batteries is considered as perfect cathode material for various military applications, especially underwater combat vehicles. For deployment at high rate applications, the low conductivity of LiFePO4 needs to be improved. Cationic substitution of niobium in the native carbon coated LiFePO4 is one of the methods to enhance the conductivity. In the present work, how the niobium doped solid solution could be formed is studied. Nanopowders of LiFePO4/C and Li1−xNbxFePO4/C (x = 0.05, 0.1, 0.15, 0.16) are synthesized from precursors using microwave synthesis. The solid solution formation up to (x = 0.15) Li1−xNbxFePO4/C without impurity phases is confirmed by X-ray diffraction (XRD) pattern and Fourier transform infrared spectroscopic (FTIR) results. Particle distribution is obtained by scanning electron microscope from the synthesized powders. Energy dispersive X-ray spectrometer (EDS) results qualitatively confirmed the presence of niobium. Also, direct current (dc) conductivities are measured using sintered pellets and activation energies are calculated using Arrhenius equation. The dependence of conductivity and activation energy of LiFePO4/C on variation of niobium doping is investigated in this study. CR2032 type coin cells are fabricated with the synthesized materials and subjected to cyclic voltammetry studies, rate capability and cycle life studies. Diffusion coefficients are obtained from electrochemical impedance spectroscopy studies. It is observed that room temperature dc conductivity improved by niobium doping when compared to LiFePO4/C (0.379 × 10−2 S/cm) and is maximum for Li0.9Nb0.1FePO4/C (40.58 × 10−2 S/cm). It is also observed that diffusion coefficient of Li+ in Li0.9Nb0.1FePO4/C (13.306 × 10−9 cm2 s−1) improved by two orders of magnitude in comparison with the pure LiFePO4 (10 − 12 cm2 s−1) and carbon-coated nano LiFePO4/C (0.632 × 10−11 cm2 s−1). Cells with Li0.9Nb0.1FePO4/C are able to deliver useful capacity of around 104 mAh/g at 10 C rate. More than 500 cycles are achieved with Li0.9Nb0.1FePO4/C at 20 C rate.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Padhi, A. K. , Nanjundaswamy, K. S. , and Goodenough, J. B. , 1997, “ Phospho-Olivines as Positive Electrode Materials for Rechargeable Lithium Batteries,” J. Electrochem. Soc., 144(4), pp. 1188–1194. [CrossRef]
Tang, K. , Sun, J. , Yu, X. , Li, H. , and Huang, X. , 2009, “ Electrochemical Performance of LiFePO4 Thin Films With Different Morphology and Crystallinity,” Electrochim. Acta, 54(26), pp. 6565–6569. [CrossRef]
Jiang, J. , and Dahn, J. R. , 2004, “ ARC Studies of the Thermal Stability of Three Different Cathode Materials: LiCoO2; Li [Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC Electrolytes,” Electrochem. Commun, 6(1), pp. 39–43. [CrossRef]
Yamada, A. , Koizumi, H. , Nishimura, S.-I. , Sonoyama, N. , Kanno, R. , Yonemura, M. , Nakamura, T. , and Kobayashi, Y. , 2006, “ Room-Temperature Miscibility Gap in LixFePo4,” Nat. Mater., 5(5), pp. 357–360. [CrossRef] [PubMed]
Morgan, D. , Van der Ven, A. , and Ceder, G. , 2004, “ Li Conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) Olivine Materials,” Electrochem. Solid State Lett., 7(2), pp. A30–A32. [CrossRef]
Islam, M. S. , Driscoll, D. J. , Fisher, C. A. J. , and Slater, P. R. , 2005, “ Atomic Scale Investigation of Defects, Dopants, and Lithium Transport in a LiFePO4 Olivine-Type Battery Material,” Chem Mater., 17(20), pp. 5085–5092. [CrossRef]
Nishimura, S. , Kobayashi, G. , Ohoyama, K. , Kanno, R. , Yashima, M. , and Yamada, A. , 2008, “ Experimental Visualization of Lithium Diffusion of LixFePO4,” Nat. Mater., 7(9), pp. 707–711. [CrossRef] [PubMed]
Malik, R. , Burch, D. , Bazant, M. , and Ceder, G. , 2010, “ Particle Size Dependence of the Ionic Diffusivity,” Nano Lett., 10(10), pp. 4123–4127. [CrossRef] [PubMed]
Chang, Z. R. , Lv, H. J. , Tang, H. W. , Li, H. J. , Yuan, X. Z. , and Wang, H. , 2009, “ Synthesis and Characterization of High Density LiFePO4/C Composites as Cathode Materials for Lithium Ion Batteries,” Electrochim. Acta, 54(20), pp. 4595–4599. [CrossRef]
Sun, C. S. , Zhou, Z. , Xu, Z. G. , Wang, D. G. , Wei, J. P. , and Bian, X. K. , 2009, “ Improved High-Rate Charge/Discharge Performances of LiFePO4 Via V-Doping,” J. Power Sources, 193(2), pp. 841–845. [CrossRef]
Konarova, M. , and Taniguchi, I. , 2009, “ Physical and Electrochemical Properties of LiFePO4 Nanoparticles Synthesized by a Combination of Spray Pyrolysis With Wet Ball Milling,” J. Power Sources, 194(2), pp. 1029–1035. [CrossRef]
Zhao, B. , Jiang, Y. , Zhang, H. , Tao, H. , Zhong, M. , and Jiao, Z. , 2009, “ Morphology and Electrical Properties of Carbon Coated LiFePO4 Cathode Materials,” J. Power Sources, 189(1), pp. 462–466. [CrossRef]
Wu, S.-h. , Chen, M.-S. , Chien, C.-J. , and Fu, Y.-P. , 2009, “ Preparation and Characterization of TI4+—Doped LiFePO4 Cathode Materials for Lithium-Ion Batteries,” J. Power Sources, 189(1), pp. 440–444. [CrossRef]
Zhang, Y. , Huo, Q.-y. , Du, P.-P. , Wang, L.-Z. , Zhang, A.-Q. , Song, Y.-h. , Lv, Y. , and Li, G.-y. , 2012, “ Advances in New Cathode Material LiFePO4 for Lithium-Ion Batteries,” Synth. Met., 162(13–14), pp. 1315–1326. [CrossRef]
Chen, X.-J. , Zhao, X.-B. , Cao, G.-S. , Ma, S.-L. , Xie, J. , and Zhu, T.-J. , 2006, “ Electrochemical Properties of Nb Doped LiFePO4/C Prepared by One-Step Solid-State Synthesis,” Chin. J. Nonferrous Met., 16(10), pp. 1665–1671. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZYXZ200610002.htm
Park, C. K. , Park, S. B. , Oh, S. H. , Jang, H. , and Cho, W. I. , 2011, “ Bull. Lorean, Li Ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4,” Chem. Soc., 32(3), pp. 836–840.
Shin, H. C. , Cho, W. I. , and Jang, H. , 2006, “ Electrochemical Properties of the Carbon Coated LiFePO4 as a Cathode Material for Lithium-Ion Secondary Batteries,” J. Power Sources, 159(2), pp. 1383–1388. [CrossRef]
Wurm, C. , Morcrette, M. , Gwizdala, S. , and Masquelier, C. , 2002, “ Lithium Transition-Metal Phosphate Powder for Rechargeable Batteries,” Patent No. CNRS-UMICORE, #WO 02/099913 A1.
Higuchi, M. , Katayama, K. , Azuma, Y. , Yukawa, M. , and Suhara, M. , 2003, “ Synthesis of LiFePO4 Cathode Material by Microwave Processing,” J. Power Sources, 119–121, pp. 258–261. [CrossRef]
Park, K. S. , Son, J. T. , Chung, H. T. , Kim, S. J. , Kim, C. H. , Lee, C. H. , and Kim, H. G. , 2003, “ Synthesis of LiFePO4 by Co-Precipitation and Microwave Heating,” Electrochem. Commun., 5(10), pp. 839–842. [CrossRef]
Wang, L. , Huang, Y. , Jiang, R. , and Jia, D. , 2007, “ Preparation and Characterization of Nanosized LiFePO4 by Low Heating Solidstate Coordination Method and Microwave Heating,” Electrochim. Acta, 52(24), pp. 6778–6783. [CrossRef]
Beninati, S. , Damen, L. , and Mastragostino, M. , 2008, “ MW Assisted Synthesis of LiFePO4 for High Power Applications,” J. Power Sources, 180(2), pp. 875–879. [CrossRef]
Murugan, A. V. , Muraliganth, T. , and Manthiram, A. , 2008, “ Rapid Microwave Solvothermal Synthesis of Phosphor Olivine Nanorods and Their Coating With a Mixed Conducting Polymer for Lithium Ion Batteries,” Electrochem. Commun., 10(6), pp. 903–906. [CrossRef]
Bykov, Y. V. , Rybakov, K. I. , and Semenov, V. E. , 2001, “ High Temperature Microwave Processing of Materials,” J. Phys. D: Appl. Phys., 34(13), pp. R55–R75. [CrossRef]
Li, W. , Ying, J. , Wan, C. , Jiang, C. , Gao, J. , and Tang, C. , 2007, “ Preparation and Characterization of LiFePO4 From NH4FePO4 H2O Under Different Microwave Heating Conditions,” J. Solid State Electrochem., 11(6), pp. 799–803. [CrossRef]
Zhang, Y. , Feng, H. , Wu, X. , Wang, L. , Zhang, A. , Xia, T. , Dong, H. , and Liu, M. , 2009, “ Onestep Microwave Synthesis and Characterization of Carbon Modified Nanocrystalline LiFePO4,” Electrochim. Acta, 54(11), pp. 3206–3210. [CrossRef]
Ong, S. P. , Chevrier, V. L. , and Ceder, G. , 2011, “ Comparison of Small Polaron Migration and Phase Separation in Olivine LiMnPO4 and LiFePO4 Using Hybrid Density Functional Theory,” Phys. Rev. B, 83(7), p. 075112. [CrossRef]
Shahid, R. , and Murugavel, S. , 2013, “ Particle Size Dependent Confinement and Lattice Strain Effects in LiFePO4,” Phys. Chem. Chem. Phys, 15(43), pp. 18809–18814. [CrossRef] [PubMed]
Molenda, J. , Kulka, A. , Milewska, A. , Zając, W. , and Swierczek, K. , 2013, “ Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni),” Mater., 6(5), pp. 1656–1687. [CrossRef]
Yabuuchi, N. , Kubota, K. , Aoki, Y. , and Komaba, S. , 2016, “ Understanding Particle-Size-Dependent Electrochemical Properties of Li2MnO3-Based Positive Electrode Materials for Rechargeable Lithium Batteries,” J. Phys. Chem. C, 120(2), pp. 875–885.
Chung, S.-Y. , Bloking, J. , and Chiang, Y.-M. , 2002, “ Electronically Conductive Phosphor-Olivines as Lithium Storage Electrodes,” Nat. Mater., 1(2), pp. 123–128. [CrossRef] [PubMed]
Chung, S.-Y. , and Chiang, Y.-M. , 2003, “ Microscale Measurements of the Electrical Conductivity of Doped LiFePO4,” Electrochem. Solid State Lett., 6(12), pp. A278–A281. [CrossRef]
Nakamura, T. , Miwa, Y. , Tabuchi, M. , and Yamada, Y. , 2006, “ Structural and Surface Modifications of LiFePO4 Olivine Particles and Their Electrochemical Properties,” J. Electrochem. Soc., 153(6), pp. A1108–A1114. [CrossRef]
Zhang, D. Y. , Zhang, L. , Zhang, P. X. , Lin, M. C. , Huang, X. Q. , Ren, X. Z. , and Xu, Q. M. , 2010, “ Modification of LiFePO4 by Citric Acid Coating and Nb5+ Doping,” J. Adv. Mater. Res., 158, pp. 167–173. [CrossRef]
Satyavani, T. V. S. L. , Srinivas Kumar, A. , and Subbarao, P. S. V. , 2014, Physics of Semiconductor Devices, Environmental Science and Engineering, Springer International Publishing, Cham, Switzerland, pp. 721–723.
Julian, C. , Rougier, C. J. , and Nazri, G. A. , 1997, “ Synthesis, Structure, Lattice Dynamics and Electrochemistry of Lithiated Manganese Spinel (LiMn2O4),” Mater. Res. Soc. Proc., 453, pp. 647–653. [CrossRef]
Rouier, A. , Nazri, G. A. , and Julien, C. , 1997, “ Vibrational Spectroscopy and Electrochemical Properties of LiNi0.7Co0.3O2 Cathode Materials for Rechargeable Lithium Batteries,” Ionics, 3(3–4), pp. 170–176. [CrossRef]
Julien, C. M. , Jozwiak, P. , and Garbarczyk, J. , 2004, “ Advanced Techniques for Energy Sources Investigating and Testing,” International Workshop, Sofia, Bulgaria, L4-1, Sept. 4–9.
Takahashi, M. , Tobishima, S.-I. , Takei, K. , and Sakurai, Y. , 2002, “ Reaction Behaviour of LiFePO4 as a Cathode Material for Rechargeable Lithium Batteries,” Solid State Ionics, 148(3–4), pp. 283–289. [CrossRef]
Novikova, A. S. , and Yaroslavtsev, B. A. , 2017 “ Cathode Materials Based on Olivine Lithium Iron Phosphates for Lithium-Ion Batteries,” Rev. Adv. Mater. Sci., 49, pp. 129–139. http://www.ipme.ru/e-journals/RAMS/no_24917/02_24917_novikova.pdf
Kim, D. J. , Ponraj, R. , Kannan, A. G. , Lee, H.-W. , Fathi, R. , Ruffo, R. , Mari, C. M. , and Kim, D. K. , 2013, “ Diffusion Behaviour of Sodium Ions in Na0.44MnO2 in Aqueous and Non-Aqueous Electrolytes,” J. Power Sources, 244, pp. 758–763. [CrossRef]
Kandhasamy, S. , Nallathamby, K. , and Minakshi, M. , 2012, “ Role of Structural Defects in Olivine Cathodes,” Prog. Solid State Chem., 40(1–2), pp. 1–5. [CrossRef]


Grahic Jump Location
Fig. 1

XRD pattern of Li 1−xNbxFePO4 (x = 0–0.16)

Grahic Jump Location
Fig. 2

Room temperature FTIR spectra of Li1−xNbxFePO4 (x = 0, 0.05, 0.1, 0.15, 0.16)

Grahic Jump Location
Fig. 3

(a) Scanning electron micrograph of LiFePO4/C powder with average particle size 33 nm, (b) scanning electron micrograph of Li0.95Nb0.05FePO4 powder with average particle size 36 nm, (c) scanning electron micrograph of Li0.9Nb 0.1FePO4 powder with average particle size 47 nm, and (d) scanning electron micrograph of Li0.85Nb0.15FePO4 powder with ave. particle size 62 nm

Grahic Jump Location
Fig. 4

(a) Energy dispersive X-ray spectrometer spectrum ofLi0.95Nb0.05FePO4/C (x = 0.05), (b) EDS spectrum of Li0.9Nb0.1FePO4/C (x = 0.1), and (c) EDS spectrum of Li0.85Nb0.15FePO4/C (x = 0.15)

Grahic Jump Location
Fig. 5

Selected area diffraction pattern of transmission electron micrograph for Li0.9Nb0.1FePO4/C

Grahic Jump Location
Fig. 6

Comparison of cyclic voltammograms of Li1−xNbxFePO4

Grahic Jump Location
Fig. 7

EIS plots of the cells containing (a) LiFePO4/C and(b)Li0.95Nb0.05FePO4/C, (c) Li0.9Nb0.1FePO4/C, and (d) Li0.85Nb0.15FePO4/C

Grahic Jump Location
Fig. 8

Equivalent circuit to fit impedance data

Grahic Jump Location
Fig. 9

(a) C/10 to 20 C rate discharge characteristics of LiFePO4/C half cell, (b) C/10 to 20 C rate discharge characteristics of Li0.95Nb0.05FePO4/C half cell, (c) C/10 to 20 C rate discharge characteristics of Li0.9Nb0.1FePO4/C half cell, (d) C/10 to 20 C rate discharge characteristics of Li0.85Nb0.15FePO4/C half cell, and (e) C/10 to 2 C rate discharge characteristics of commercial LiFePO4 half cell

Grahic Jump Location
Fig. 10

Charge-discharge characteristics of Li0.9Nb0.1FePO4/C half cell in 20 C rate for 1–500 number of cycles



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In