0
Research Papers

Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation

[+] Author and Article Information
S. Zhang

Forschungszentrum Jülich GmbH IEK-3,
Electrochemical Process Engineering,
Jülich 52425, Germany
e-mail: s.zhang@fz-juelich.de

U. Reimer

Forschungszentrum Jülich GmbH IEK-3,
Electrochemical Process Engineering,
Jülich 52425, Germany
e-mail: u.reimer@fz-juelich.de

Y. Rahim

Forschungszentrum Jülich GmbH IEK-3,
Electrochemical Process Engineering,
Jülich 52425, Germany
e-mail: y.rahim@fz-juelich.de

S. B. Beale

Fellow ASME
Forschungszentrum Jülich GmbH IEK-3,
Electrochemical Process Engineering,
Jülich 52425, Germany;
Mechanical and Materials Engineering,
Queen's University,
Kingston K7L 3N6, ON, Canada
e-mail: s.beale@fz-juelich.de

W. Lehnert

Forschungszentrum Jülich GmbH IEK-3,
Electrochemical Process Engineering,
Jülich 52425, Germany;
Modeling in Electrochemical Process
Engineering,
RWTH Aachen University,
Aachen 52056, Germany;
JARA-HPC,
Jülich 52425, Germany
e-mail: w.lehnert@fz-juelich.de

1Corresponding author.

Manuscript received August 15, 2018; final manuscript received November 12, 2018; published online January 22, 2019. Assoc. Editor: Partha P. Mukherjee.

J. Electrochem. En. Conv. Stor. 16(3), 031002 (Jan 22, 2019) (12 pages) Paper No: JEECS-18-1084; doi: 10.1115/1.4042063 History: Received August 15, 2018; Revised November 12, 2018

A computational fluid dynamics model for high-temperature polymer electrolyte fuel cells (PEFC) is developed. This allows for three-dimensional (3D) transport-coupled calculations to be conducted. All major transport phenomena and electrochemical processes are taken into consideration. Verification of the present model is achieved by comparison with current density and oxygen concentration distributions along a one-dimensional (1D) channel. Validation is achieved by comparison with polarization curves from experimental data gathered in-house. Deviations between experimental and numerical results are minor. Internal transport phenomena are also analyzed. Local variations of current density from under channel regions and under rib regions are displayed, as are oxygen mole fractions. The serpentine gas channels contribute positively to gas redistribution in the gas diffusion layers (GDLs) and channels.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Siegel, C. , 2008, “Review of Computational Heat and Mass Transfer Modeling in Polymer-Electrolyte-Membrane (PEM) Fuel Cells,” Energy, 33(9), pp. 1331–1352. [CrossRef]
Wang, Y. , Chen, K. S. , Mishler, J. , Cho, S. C. , and Adroher, X. C. , 2011, “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research,” Appl. Energy, 88 (4), pp. 981–1007. [CrossRef]
Weber, A. Z. , Borup, R. L. , Darling, R. M. , Das, P. K. , Dursch, T. J. , Gu, W. , Harvey, D. , Kusoglu, A. , Litster, S. , Mench, M. M. , Mukundan, R. , Owejan, J. P. , Pharoah, J. G. , Secanell, M. , and Zenyuk, I. V. , 2014, “A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells,” J. Electrochem. Soc., 161(12), pp. F1254–F1299. [CrossRef]
Chippar, P. , Oh, K. , Kim, W.-G. , and Ju, H. , 2014, “Numerical Analysis of Effects of Gas Crossover Through Membrane Pinholes in High-Temperature Proton Exchange Membrane Fuel Cells,” Int. J. Hydrogen Energy, 39(6), pp. 2863–2871. [CrossRef]
Wippermann, K. , Wannek, C. , Oetjen, H.-F. , Mergel, J. , and Lehnert, W. , 2010, “Cell Resistances of Poly(2,5-Benzimidazole)-Based High Temperature Polymer Membrane Fuel Cell Membrane Electrode Assemblies: Time Dependence and Influence of Operating Parameters,” J. Power Sources, 195(9), pp. 2806–2809. [CrossRef]
Galbiati, S. , Baricci, A. , Casalegno, A. , and Marchesi, R. , 2012, “Experimental Study of Water Transport in a Polybenzimidazole-Based High Temperature PEMFC,” Int. J. Hydrogen Energy, 37(3), pp. 2462–2469. [CrossRef]
Liu, Y. , Lehnert, W. , Janßen, H. , Samsun, R. C. , and Stolten, D. , 2016, “A Review of High-Temperature Polymer Electrolyte Membrane Fuel-Cell (HT-PEMFC)-Based Auxiliary Power Units for Diesel-Powered Road Vehicles,” J. Power Sources, 311, pp. 91–102. [CrossRef]
Steinberger-Wilckens, R. , and Lehnert, W. , 2010, Innovations in Fuel Cell Technologies, Royal Society of Chemistry, Cambridge, UK.
Su, A. , Ferng, Y. M. , and Shih, J. C. , 2009, “Experimentally and Numerically Investigating Cell Performance and Localized Characteristics for a High-Temperature Proton Exchange Membrane Fuel Cell,” Appl. Therm. Eng., 29(16), pp. 3409–3417. [CrossRef]
Oh, K. , Jeong, G. , Cho, E. , Kim, W. , and Ju, H. , 2014, “A CO Poisoning Model for High-Temperature Proton Exchange Membrane Fuel Cells Comprising Phosphoric Acid-Doped Polybenzimidazole Membranes,” Int. J. Hydrogen Energy, 39(36), pp. 21915–21926. [CrossRef]
Jiao, K. , and Li, X. , 2010, “A Three-Dimensional Non-Isothermal Model of High Temperature Proton Exchange Membrane Fuel Cells With Phosphoric Acid Doped Polybenzimidazole Membranes,” Fuel Cells, 10(3), pp. 351–362. [CrossRef]
Jiao, K. , Zhou, Y. , Du, Q. , Yin, Y. , Yu, S. , and Li, X. , 2013, “Numerical Simulations of Carbon Monoxide Poisoning in High Temperature Proton Exchange Membrane Fuel Cells With Various Flow Channel Designs,” Appl. Energy, 104, pp. 21–41. [CrossRef]
Su, A. , Ferng, Y. , and Shih, J. , 2010, “CFD Investigating the Effects of Different Operating Conditions on the Performance and the Characteristics of a High-Temperature PEMFC,” Energy, 35(1), pp. 16–27. [CrossRef]
Chippar, P. , Kang, K. , Lim, Y.-D. , Kim, W.-G. , and Ju, H. , 2014, “Effects of Inlet Relative Humidity (RH) on the Performance of a High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC),” Int. J. Hydrogen Energy, 39(6), pp. 2767–2775. [CrossRef]
Yin, Y. , Wang, J. , Yang, X. , Du, Q. , Fang, J. , and Jiao, K. , 2014, “Modeling of High Temperature Proton Exchange Membrane Fuel Cells With Novel Sulfonated Polybenzimidazole Membranes,” Int. J. Hydrogen Energy, 39(25), pp. 13671–13680. [CrossRef]
Park, J. , and Min, K. , 2012, “A Quasi-Three-Dimensional Non-Isothermal Dynamic Model of a High-Temperature Proton Exchange Membrane Fuel Cell,” J. Power Sources, 216, pp. 152–161. [CrossRef]
Kim, J. , Kim, M. , Lee, B.-G. , and Sohn, Y.-J. , 2015, “Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells in Daily Based Start/Stop Operation Mode Using Reformed Gas,” Int. J. Hydrogen Energy, 40(24), pp. 7769–7776. [CrossRef]
Kannan, A. , Kabza, A. , and Scholta, J. , 2015, “Long Term Testing of Start-Stop Cycles on High Temperature PEM Fuel Cell Stack,” J. Power Sources, 277, pp. 312–316. [CrossRef]
Jeon, Y. , Na, H. , Hwang, H. , Park, J. , Hwang, H. , and Shul, Y.-G. , 2015, “Accelerated Life-Time Test Protocols for Polymer Electrolyte Membrane Fuel Cells Operated at High Temperature,” Int. J. Hydrogen Energy, 40(7), pp. 3057–3067. [CrossRef]
Lee, H.-J. , Kim, B. G. , Lee, D. H. , Park, S. J. , Kim, Y. , Lee, J. W. , Henkensmeier, D. , Nam, S. W. , Kim, H.-J. , Kim, H. , and Kim, J.-Y. , 2011, “Demonstration of a 20W Class High-Temperature Polymer Electrolyte Fuel Cell Stack With Novel Fabrication of a Membrane Electrode Assembly,” Int. J. Hydrogen Energy, 36(9), pp. 5521–5526. [CrossRef]
Li, Q. , Jensen, J. O. , Savinell, R. F. , and Bjerrum, N. J. , 2009, “High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells,” Prog. Polym. Sci., 34(5), pp. 449–477. [CrossRef]
Shen, C. , Kong, G. , Wang, J. , and Zhang, X. , 2015, “Synthesis and Characterization of High Temperature Proton Exchange Membrane From Isocyanatopropyltriethoxysilane and Hydroxyethane Diphosphonic Acid,” Int. J. Hydrogen Energy, 40(1), pp. 363–372. [CrossRef]
Xue, C. , Zou, J. , Sun, Z. , Wang, F. , Han, K. , and Zhu, H. , 2014, “Graphite Oxide/Functionalized Graphene Oxide and Polybenzimidazole Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells,” Int. J. Hydrogen Energy, 39(15), pp. 7931–7939. [CrossRef]
Úbeda, D. , Pinar, F. J. , Cañizares, P. , Rodrigo, M. A. , and Lobato, J. , 2012, “An Easy Parameter Estimation Procedure for Modeling a HT-PEMFC,” Int. J. Hydrogen Energy, 37(15), pp. 11308–11320. [CrossRef]
Springer, T. E. , Zawodzinski, T. A. , and Gottesfeld, S. , 1991, “Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc., 138(8), pp. 2334–2342. [CrossRef]
Bernardi, D. M. , and Verbrugge, M. W. , 1992, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell,” J. Electrochem. Soc., 139(9), pp. 2477–2491. [CrossRef]
Thampan, T. , Malhotra, S. , Tang, H. , and Datta, R. , 2000, “Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells,” J. Electrochem. Soc., 147(9), pp. 3242–3250. [CrossRef]
Berning, T. , Lu, D. , and Djilali, N. , 2002, “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,” J. Power Sources, 106(1–2), pp. 284–294. [CrossRef]
Francesco, M. D. , Arato, E. , and Costa, P. , 2004, “Transport Phenomena in Membranes for PEMFC Applications: An Analytical Approach to the Calculation of Membrane Resistance,” J. Power Sources, 132(1), pp. 127–134. [CrossRef]
Fimrite, J. , Struchtrup, H. , and Djilali, N. , 2005, “Transport Phenomena in Polymer Electrolyte Membranes—I: Modeling Framework,” J. Electrochem. Soc., 152(9), pp. A1804–A1814. [CrossRef]
Lin, Y. , and Beale, S. B. , 2005, “Numerical Predictions of Transport Phenomena in a Proton Exchange Membrane Fuel Cell,” ASME J. Fuel Cell Sci. Technol., 2(4), pp. 213–218. [CrossRef]
Schwarz, D. H. , and Beale, S. B. , 2009, “Calculations of Transport Phenomena and Reaction Distribution in a Polymer Electrolyte Membrane Fuel Cell,” Int. J. Heat Mass Transfer, 52(17–18), pp. 4074–4081. [CrossRef]
Peng, J. , and Lee, S. J. , 2006, “Numerical Simulation of Proton Exchange Membrane Fuel Cells at High Operating Temperature,” J. Power Sources, 162(2), pp. 1182–1191. [CrossRef]
Jiao, K. , Alaefour, I. E. , and Li, X. , 2011, “Three-Dimensional Non-Isothermal Modeling of Carbon Monoxide Poisoning in High Temperature Proton Exchange Membrane Fuel Cells With Phosphoric Acid Doped Polybenzimidazole Membranes,” Fuel, 90(2), pp. 568–582. [CrossRef]
Huang, H. , Zhou, Y. , Deng, H. , Xie, X. , Du, Q. , Yin, Y. , and Jiao, K. , 2016, “Modeling of High Temperature Proton Exchange Membrane Fuel Cell Start-Up Processes,” Int. J. Hydrogen Energy, 41(4), pp. 3113–3127. [CrossRef]
Chippar, P. , and Ju, H. , 2012, “Three-Dimensional Non-Isothermal Modeling of a Phosphoric Acid-Doped Polybenzimidazole (PBI) Membrane Fuel Cell,” Solid State Ionics, 225, pp. 30–39. [CrossRef]
Chippar, P. , Oh, K. , Kim, D. , Hong, T.-W. , Kim, W. , and Ju, H. , 2013, “Coupled Mechanical Stress and Multi-Dimensional CFD Analysis for High Temperature Proton Exchange Membrane Fuel Cells (HT-PEMFCs),” Int. J. Hydrogen Energy, 38(18), pp. 7715–7724. [CrossRef]
Oh, K. , Chippar, P. , and Ju, H. , 2014, “Numerical Study of Thermal Stresses in High-Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC),” Int. J. Hydrogen Energy, 39(6), pp. 2785–2794. [CrossRef]
Oh, K. , and Ju, H. , 2015, “Temperature Dependence of CO Poisoning in High-Temperature Proton Exchange Membrane Fuel Cells With Phosphoric Acid-Doped Polybenzimidazole Membranes,” Int. J. Hydrogen Energy, 40(24), pp. 7743–7753. [CrossRef]
Kvesić, M. , Reimer, U. , Froning, D. , Lüke, L. , Lehnert, W. , and Stolten, D. , 2012, “3D Modeling of a 200 cm2 HT-PEFC Short Stack,” Int. J. Hydrogen Energy, 37(3), pp. 2430–2439. [CrossRef]
Kvesić, M. , Reimer, U. , Froning, D. , Lüke, L. , Lehnert, W. , and Stolten, D. , 2012, “3D Modeling of an HT-PEFC Stack Using Reformate Gas,” Int. J. Hydrogen Energy, 37(17), pp. 12438–12450. [CrossRef]
Hu, J. , Zhang, H. , Zhai, Y. , Liu, G. , Hu, J. , and Yi, B. , 2006, “Performance Degradation Studies on PBI/H3PO4 High Temperature PEMFC and One-Dimensional Numerical Analysis,” Electrochim. Acta, 52(2), pp. 394–401. [CrossRef]
Hu, J. , Zhang, H. , Hu, J. , Zhai, Y. , and Yi, B. , 2006, “Two Dimensional Modeling Study of PBI/H3PO4 High Temperature PEMFCs Based on Electrochemical Methods,” J. Power Sources, 160(2), pp. 1026–1034. [CrossRef]
Cheddie, D. F. , and Munroe, N. D. , 2006, “Parametric Model of an Intermediate Temperature PEMFC,” J. Power Sources, 156(2), pp. 414–423. [CrossRef]
Cheddie, D. F. , and Munroe, N. D. , 2006, “Three Dimensional Modeling of High Temperature PEM Fuel Cells,” J. Power Sources, 160(1), pp. 215–223. [CrossRef]
Sousa, T. , Mamlouk, M. , and Scott, K. , 2010, “An Isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes,” Chem. Eng. Sci., 65(8), pp. 2513–2530. [CrossRef]
Sousa, T. , Mamlouk, M. , and Scott, K. , 2010, “A Non-Isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes,” Fuel Cells, 10(6), pp. 993–1012. [CrossRef]
Sousa, T. , Mamlouk, M. , and Scott, K. , 2010, “A Dynamic Non-Isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes,” Int. J. Hydrogen Energy, 35(21), pp. 12065–12080. [CrossRef]
Sousa, T. , Mamlouk, M. , Scott, K. , and Rangel, C. M. , 2012, “Three Dimensional Model of a High Temperature PEMFC. Study of the Flow Field Effect on Performance,” Fuel Cells, 12(4), pp. 566–576. [CrossRef]
Lobato, J. , Cañizares, P. , Rodrigo, M. A. , Pinar, F. J. , Mena, E. , and Úbeda, D. , 2010, “Three-Dimensional Model of a 50 cm2 High Temperature PEM Fuel Cell. Study of the Flow Channel Geometry Influence,” Int. J. Hydrogen Energy, 35(11), pp. 5510–5520. [CrossRef]
Su, A. , Ferng, Y. , Hou, J. , and Yu, T. , 2012, “Experimental and Numerical Investigations of the Effects of PBI Loading and Operating Temperature on a High-Temperature PEMFC,” Int. J. Hydrogen Energy, 37(9), pp. 7710–7718. [CrossRef]
Ferng, Y. , Su, A. , and Hou, J. , 2014, “Parametric Investigation to Enhance the Performance of a PBI-Based High-Temperature PEMFC,” Energy Convers. Manage., 78, pp. 431–437. [CrossRef]
Sohn, Y.-J. , Kim, M. , Yang, T.-H. , and Kim, K. , 2011, “Numerical Analysis of Convective and Diffusive Fuel Transports in High-Temperature Proton-Exchange Membrane Fuel Cells,” Int. J. Hydrogen Energy, 36(23), pp. 15273–15282. [CrossRef]
Wang, Y. , Sauer, D. , Koehne, S. , and Ersoez, A. , 2014, “Dynamic Modeling of High Temperature PEM Fuel Cell Start-Up Process,” Int. J. Hydrogen Energy, 39(33), pp. 19067–19078. [CrossRef]
Kim, M. , Kang, T. , Kim, J. , and Sohn, Y.-J. , 2014, “One-Dimensional Modeling and Analysis for Performance Degradation of High Temperature Proton Exchange Membrane Fuel Cell Using PA Doped PBI Membrane,” Solid State Ionics, 262, pp. 319–323. [CrossRef]
Grigoriev, S. , Kalinnikov, A. , Kuleshov, N. , and Millet, P. , 2013, “Numerical Optimization of Bipolar Plates and Gas Diffusion Electrodes for PBI-Based PEM Fuel Cells,” Int. J. Hydrogen Energy, 38(20), pp. 8557–8567. [CrossRef]
Kim, J. , Kim, M. , Kang, T. , Sohn, Y.-J. , Song, T. , and Choi, K. H. , 2014, “Degradation Modeling and Operational Optimization for Improving The lifetime of High-Temperature PEM (Proton Exchange Membrane) Fuel Cells,” Energy, 66, pp. 41–49. [CrossRef]
Kazdal, T. J. , Lang, S. , Kühl, F. , and Hampe, M. J. , 2014, “Modelling of the Vapour-Liquid Equilibrium of Water and the In Situ Concentration of H3PO4 in a High Temperature Proton Exchange Membrane Fuel Cell,” J. Power Sources, 249, pp. 446–456. [CrossRef]
Lang, S. , Kazdal, T. J. , Kühl, F. , and Hampe, M. J. , 2015, “Experimental Investigation and Numerical Simulation of the Electrolyte Loss in a HT-PEM Fuel Cell,” Int. J. Hydrogen Energy, 40(2), pp. 1163–1172. [CrossRef]
Sun, H. , Xie, C. , Chen, H. , and Almheiri, S. , 2015, “A Numerical Study on the Effects of Temperature and Mass Transfer in High Temperature PEM Fuel Cells With ab-PBI Membrane,” Appl. Energy, 160, pp. 937–944. [CrossRef]
Beale, S. B. , Choi, H.-W. , Pharoah, J. G. , Roth, H. K. , Jasak, H. , and Jeon, D. H. , 2016, “Open-Source Computational Model of a Solid Oxide Fuel Cell,” Comput. Phys. Commun., 200, pp. 15–26. [CrossRef]
Fuller, E. N. , Schettler, P. D. , and Giddings, J. C. , 1966, “New Method for Prediction of Binary Gas-PHASE Diffusion Coefficients,” Ind. Eng. Chem., 58(5), pp. 18–27. [CrossRef]
Epstein, N. , 1989, “On Tortuosity and the Tortuosity Factor in Flow and Diffusion Through Porous Media,” Chem. Eng. Sci., 44(3), pp. 777–779. [CrossRef]
Wilke, C. R. , 1950, “Diffusional Properties of Multicomponent Gases,” Chem. Eng. Prog., 46, pp. 95–104.
Beale, S. B. , Reimer, U. , Froning, D. , Jasak, H. , Andersson, M. , Pharoah, J. G. , and Lehnert, W. , 2018, “Stability Issues of Fuel Cell Models in the Activation and Concentration Regimes,” ASME J. Electrochem. Energy Convers. Storage, 15(4), p. 041008. [CrossRef]
Kulikovsky, A. , Kucernak, A. , and Kornyshev, A. , 2005, “Feeding PEM Fuel Cells,” Electrochim. Acta, 50(6), pp. 1323–1333. [CrossRef]
Wang, Y. , and Wang, C.-Y. , 2005, “Simulation of Flow and Transport Phenomena in a Polymer Electrolyte Fuel Cell Under Low-Humidity Operation,” J. Power Sources, 147(1–2), pp. 148–161. [CrossRef]
Pharoah, J. G. , 2005, “On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells,” J. Power Sources, 144(1), pp. 77–82. [CrossRef]
Zhang, S. , Beale, S. , Reimer, U. , Lehnert, W. , and Stolten, D. , 2019, “Modeling Polymer Electrolyte Fuel Cells: A High Precision Analysis,” Appl. Energy, 233–234, pp. 1094–1103.
Bruggeman, D. , 1935, “The Calculation of Various Physical Constants of Heterogeneous Substances—I: The Dielectric Constants and Conductivities of Mixtures Composed of Isotropic Substances,” Ann. Phys., 416(7), pp. 636–791. [CrossRef]
Stenzel, O. , Pecho, O. , Holzer, L. , Neumann, M. , and Schmidt, V. , 2016, “Predicting Effective Conductivities Based on Geometric Microstructure Characteristics,” AIChE J., 62(5), pp. 1834–1843. [CrossRef]
Gaiselmann, G. , Neumann, M. , Schmidt, V. , Pecho, O. , Hocker, T. , and Holzer, L. , 2014, “Quantitative Relationships Between Microstructure and Effective Transport Properties Based on Virtual Materials Testing,” AIChE J., 60(6), pp. 1983–1999. [CrossRef]
Mukherjee, P. P. , and Wang, C.-Y. , 2006, “Stochastic Microstructure Reconstruction and Direct Numerical Simulation of the PEFC Catalyst Layer,” J. Electrochem. Soc., 153(5), pp. A840–A849. [CrossRef]
Cao, Q. , Beale, S. B. , Reimer, U. , Froning, D. , and Lehnert, W. , 2015, “The Importance of Diffusion Mechanisms in High Temperature Polymer Electrolyte Fuel Cells,” ECS Trans., 69(17), pp. 1089–1103. [CrossRef]
Cao, Q. , 2017, “Modelling of High Temperature Polymer Electrolyte Fuel Cells,” Energy Environ. Band, 389, pp. 173.
Lindstrom, M. , and Wetton, B. , 2017, “A Comparison of Fick and Maxwell–Stefan Diffusion Formulations in PEMFC Gas Diffusion Layers,” Heat Mass Transfer, 53(1), pp. 205–212. [CrossRef]
Reimer, U. , Lehnert, W. , Holade, Y. , and Kokoh, B. , 2018, “Irreversible Losses in Fuel Cells,” Fuel Cells and Hydrogen—From Fundamentals to Applied Research, V. Hacker and S. Mitsushima , eds., Elsevier, Amsterdam, The Netherlands, pp. 15–40.
Kulikovsky, A. A. , 2014, “A Physically-Based Analytical Polarization Curve of a PEM Fuel Cell,” J. Electrochem. Soc., 161(3), pp. F263–F270. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Diagram of fuel cell composition and flow path: (a) straight cell, (b) serpentine geometry, reactants flow from the bottom left inlet to the top right outlet, (c) locations marked with crosses represent inside-channel, under-channel, and under-rib sites, and (d) components of fuel cell model, including air, fuel, membrane, and bi-polar plates

Grahic Jump Location
Fig. 2

Detail of flow geometry: (a) entire geometry and (b) local mesh

Grahic Jump Location
Fig. 3

Analytical solution (void) and simulation results (solid), oxygen mole fraction (right) and current density (left) distributions along the channel, λ = 2, 4, 10

Grahic Jump Location
Fig. 4

De-assembled view of the cell

Grahic Jump Location
Fig. 5

Schematic of the fuel cell test station used for the experiments

Grahic Jump Location
Fig. 6

Comparisons of polarization curves from numerical and experimental results: (a) λ = 2/2 and (b) λ = 2/6

Grahic Jump Location
Fig. 7

Current density distribution for (a) λ = 2/2 and (b) λ = 2/6, respectively, i =0.6 A cm−2

Grahic Jump Location
Fig. 8

Current density along the central lines of under channel and under rib regions (shown in Figs. 1(b) and 1(c)), as well as line YY′. (a) λ = 2/2 and (b) λ = 2/6, respectively. Analytical solutions [66] are also shown. i =0.6 A cm−2.

Grahic Jump Location
Fig. 9

Oxygen distribution at the catalyst layer, i =0.6 A cm−2: (a) λ = 2/2 and (b) λ = 2/6

Grahic Jump Location
Fig. 10

Oxygen distribution curves at the catalyst layer, i =0.6 A cm−2: (a) λ = 2/2 and (b) λ = 2/6

Grahic Jump Location
Fig. 11

Oxygen distribution at the cross section XX′ and flow bypassing in the GDL, λ = 2/2, i =0.6 A cm−2

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In