0
Research Papers

Ferrous Nitrate–Nickel Oxide (Fe(NO3)2–NiO) Nanospheres Incorporated With Carbon Black and Polyvinylidenefluoride for Supercapacitor Applications

[+] Author and Article Information
Aqib Muzaffar, Keerthana Muthusamy

Department of Physics,
B.S. Abdur Rahman Crescent Institute
of Science and Technology,
Chennai, Tamil Nadu 600048, India

M. Basheer Ahamed

Department of Physics,
B.S. Abdur Rahman Crescent Institute
of Science and Technology,
Chennai, Tamil Nadu 600048, India
e-mail: basheerahamed@crescent.education

1Corresponding author.

Manuscript received October 9, 2018; final manuscript received January 27, 2019; published online March 13, 2019. Assoc. Editor: Eui-Hyeok Yang.

J. Electrochem. En. Conv. Stor. 16(3), 031008 (Mar 13, 2019) (6 pages) Paper No: JEECS-18-1109; doi: 10.1115/1.4042727 History: Received October 09, 2018; Revised January 27, 2019

Ferrous nitrate/nickel oxide {Fe(NO3)2–NiO} nanocomposite was synthesized via two-step facile hydrothermal route. The nanocomposite exhibits crystalline structure as unveiled by X-ray diffraction (XRD) pattern, while as the scanning electron microscope (SEM) images divulge spherical morphologies for both Fe(NO3)2 as well as NiO nanoparticles differentiating from each other in size. Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques were used to investigate supercapacitive behavior of the symmetrically fabricated nanocomposite electrode configuration using aqueous KOH as the electrolyte. The CV analyses demonstrate dominant electrical double layer capacitance (EDLC) behavior in the potential range of 0–1 V. From charge–discharge curves, the maximum specific capacitance calculated was 460 F g−1 corresponding to the energy density of 16 W h kg−1 at a high power density of 250 W kg−1. EIS data affiliate well with the CV and GCD results justifying the maximum contribution of specific capacitance due to double layer capacitance. The nanocomposite retained 84% of its original capacitance after 1000 cycles and yielded maximum efficiency of 78%.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Conway, B. E. , 1999, Electrochemical Supercapacitors: Scientific, Fundamentals, and Technological Applications, Kluwer, New York.
Park, B. H. , Lee, M. W. , and Jeong, S. M. , 2018, “ Electrochemical Behavior of Chalcogen and Halogen Fission Products in Pyro-Electrochemical Reduction Process,” J. Appl. Electrochem., 48(6), pp. 739–745. https://link.springer.com/article/10.1007/s10800-018-1153-y
Long, C. , Zheng, M. , Xiao, Y. , Lei, B. , Dong, H. , Zhang, H. , Hu, H. , and Liu, Y. , 2015, “ Amorphous Ni–Co Binary Oxide With the Hierarchical Porous Structure for Electrochemical Capacitors,” ACS Appl. Mater. Interfaces, 7(44), pp. 24419–24429. [CrossRef] [PubMed]
Yang, M. , Cheng, H. , Gu, Y. , Sun, Z. , Hu, J. , Cao, L. , Lv, F. , Li, M. , Wang, W. , Wang, Z. , and Wu, S. , 2015, “ Facile Electrodeposition of 3D Concentration-Gradient Ni-Co Hydroxide Nanostructures on Nickel Foam as High-Performance Electrodes for Asymmetric Supercapacitors,” Nano Res., 8(8), pp. 2744–2754. [CrossRef]
Zhang, Y. Z. , Wang, Y. , Cheng, T. , Lai, W. Y. , Pang, H. , and Huang, W. , 2015, “ Flexible Supercapacitors Based on Paper Substrates: A New Paradigm for Low-Cost Energy Storage,” Chem. Soc. Rev., 44(15), pp. 5181–5199. [CrossRef] [PubMed]
Yang, C. S. , Jang, Y. S. , and Jeong, H. K. , 2014, “ Bamboo-Based Activated Carbon for Supercapacitor Applications,” Curr. Appl. Phys., 14(12), pp. 1616–1620. [CrossRef]
Suárez-Guevara, J. , Ruiz, V. , and Gómez-Romero, P. , 2014, “ Stable Graphene–Polyoxometalate Nanomaterials for Application in Hybrid Supercapacitors,” Phys. Chem. Chem. Phys., 16(38), pp. 20411–20414. [CrossRef] [PubMed]
Kim, D. K. , Hwang, M. , Ko, D. , Kang, J. , Seong, K. D. , and Piao, Y. , 2017, “ Electrochemical Performance of 3D Porous Ni-Co Oxide With Electrochemically Exfoliated Graphene for Asymmetric Supercapacitor Applications,” Electrochim. Acta, 246, pp. 680–688. [CrossRef]
Zhu, M. , Meng, D. , Wang, C. , and Diao, G. , 2013, “ Facile Fabrication of Hierarchically Porous CuFe2O4 Nanospheres With Enhanced Capacitance Property,” ACS Appl. Mater. Interfaces, 5(13), pp. 6030–6037. [CrossRef] [PubMed]
Xu, Y. , Wang, X. , An, C. , Wang, Y. , Jiao, L. , and Yuan, H. , 2014, “ Facile Synthesis Route of Porous MnCo2O4 and CoMn2O4 Nanowires and Their Excellent Electrochemical Properties in Supercapacitors,” J. Mater. Chem. A, 2(39), pp. 16480–16488. [CrossRef]
Bai, Y. , Wang, R. , Lu, X. , Sun, J. , and Gao, L. , 2016, “ Template Method to Controllable Synthesis 3D Porous NiCo2O4 With Enhanced Capacitance and Stability for Supercapacitors,” J. Colloid. Interface Sci., 468, pp. 1–9. [CrossRef] [PubMed]
Zhang, M. , Guo, S. , Zheng, L. , Zhang, G. , Hao, Z. , Kang, L. , and Liu, Z. H. , 2013, “ Preparation of NiMn2O4 With the Large Specific Surface Area From an Epoxide-Driven Sol–Gel Process and Its Capacitance,” Electrochim. Acta, 87, pp. 546–553. [CrossRef]
Zhang, H. , Wu, J. , Zhai, C. , Ma, X. , Du, N. , Tu, J. , and Yang, D. , 2007, “ From Cobalt Nitrate Carbonate Hydroxide Hydrate Nanowires to Porous Co3O4 Nanorods for High Performance Lithium-Ion Battery Electrodes,” Nanotechnology, 19(3), p. 035711. [CrossRef] [PubMed]
Konstantinou, F. , Shougee, A. , Albrecht, T. , and Fobelets, K. , 2017, “ TiO2 Coated Si Nanowire Electrodes for Electrochemical Double Layer Capacitors in Room Temperature Ionic Liquid,” J. Phys. D, 50(41), p. 415503. [CrossRef]
Wu, X. , Wang, Q. , Zhang, W. , Wang, Y. , and Chen, W. , 2016, “ Nano Nickel Oxide Coated Graphene/Polyaniline Composite Film With High Electrochemical Performance for Flexible Supercapacitor,” Electrochim. Acta, 211, pp. 1066–1075. [CrossRef]
Faraji, S. , and Ani, F. N. , 2014, “ Microwave-Assisted Synthesis of Metal Oxide/Hydroxide Composite Electrodes for High Power Supercapacitors—A Review,” J. Power Sources, 263, pp. 338–360. [CrossRef]
Wang, X. , Song, J. , Gao, L. , Jin, J. , Zheng, H. , and Zhang, Z. , 2004, “ Optical and Electrochemical Properties of Nanosized NiO Via Thermal Decomposition of Nickel Oxalate Nanofibres,” Nanotechnology, 16(1), p. 37. [CrossRef]
Lin, S. H. , Chen, F. R. , and Kai, J. J. , 2008, “ Electrochromic Properties of Nano-Composite Nickel Oxide Film,” Appl. Surf. Sci., 254(11), pp. 3357–3363. [CrossRef]
Eskusson, J. , Rauwel, P. , Nerut, J. , and Jänes, A. , 2016, “ A Hybrid Capacitor Based on Fe3O4-Graphene Nanocomposite/Few-Layer Graphene in Different Aqueous Electrolytes,” J. Electrochem. Soc., 1, pp. A2768–A2775. [CrossRef]
Tooming, T. , Thomberg, T. , Siinor, L. , Tõnurist, K. , Jänes, A. , and Lust, E. , 2014, “ A Type High Capacitance Supercapacitor Based on Mixed Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions,” J. Electrochem. Soc., 161(3), pp. A222–A227. [CrossRef]
Siinor, L. , Siimenson, C. , Lust, K. , and Lust, E. , 2013, “ Mixture of 1-Ethyl-3-Methylimidazolium Tetrafluoroborate and 1-Ethyl-3-Methylimidazolium Iodide: A New Potential High Capacitance Electrolyte for EDLCs,” Electrochem. Commun., 1, pp. 5–7. [CrossRef]
Gund, G. S. , Dubal, D. P. , Jambure, S. B. , Shinde, S. S. , and Lokhande, C. D. , 2013, “ Temperature Influence on Morphological Progress of Ni(OH)2 Thin Films and Its Subsequent Effect on Electrochemical Supercapacitive Properties,” J. Mater. Chem. A, 1(15), pp. 4793–4803. [CrossRef]
Snook, G. A. , Kao, P. , and Best, A. S. , 2011, “ Conducting-Polymer-Based Supercapacitor Devices and Electrodes,” J. Power Sources, 196(1), pp. 1–12. [CrossRef]
Wang, D. W. , Li, F. , and Cheng, H. M. , 2008, “ Hierarchical Porous Nickel Oxide and Carbon as Electrode Materials for Asymmetric Supercapacitor,” J. Power Sources, 185(2), pp. 1563–1568. [CrossRef]
Deng, W. , Ji, X. , Chen, Q. , and Banks, C. E. , 2011, “ Electrochemical Capacitors Utilising Transition Metal Oxides: An Update of Recent Developments,” RSC Adv., 1(7), pp. 1171–1178. [CrossRef]
Lokhande, C. D. , Dubal, D. P. , and Joo, O. S. , 2011, “ Metal Oxide Thin Film Based Supercapacitors,” Curr. Appl. Phys., 11(3), pp. 255–270. [CrossRef]
Shaikjee, A. , and Coville, N. J. , 2012, “ The Role of the Hydrocarbon Source on the Growth of Carbon Materials,” Carbon, 50(10), pp. 3376–3398. [CrossRef]
Xu, J. , Gao, Q. , Zhang, Y. , Tan, Y. , Tian, W. , Zhu, L. , and Jiang, L. , 2014, “ Preparing Two-Dimensional Microporous Carbon From Pistachio Nutshell With High Areal Capacitance as Supercapacitor Materials,” Sci. Rep., 4, p. 5545. https://www.nature.com/articles/srep05545 [PubMed]
Huang, C. P. , Wang, H. W. , and Chiu, P. C. , 1998, “ Nitrate Reduction by Metallic Iron,” Water Res., 32(8), pp. 2257–2264. [CrossRef]
Zheng, Y. Z. , Ding, H. Y. , and Zhang, M. L. , 2009, “ Preparation and Electrochemical Properties of Nickel Oxide as a Supercapacitor Electrode Material,” Mater. Res. Bull., 44(2), pp. 403–407. [CrossRef]
Wang, H. , Xu, Z. , Kohandehghan, A. , Li, Z. , Cui, K. , Tan, X. , Stephenson, T. J. , King'ondu, C. K. , Holt, C. M. , Olsen, B. C. , and Tak, J. K. , 2013, “ Interconnected Carbon Nanosheets Derived From Hemp for Ultrafast Supercapacitors With High Energy,” ACS Nano, 7(6), pp. 5131–5141. [CrossRef] [PubMed]
Morishita, T. , Soneda, Y. , Hatori, H. , and Inagaki, M. , 2007, “ Carbon-Coated Tungsten and Molybdenum Carbides for Electrode of Electrochemical Capacitor,” Electrochim. Acta., 52(7), pp. 2478–2484. [CrossRef]
Seevakan, K. , Manikandan, A. , Devendran, P. , Shameem, A. , and Alagesan, T. , 2018, “ Microwave Combustion Synthesis, Magneto-Optical and Electrochemical Properties of NiMoO4 Nanoparticles for Supercapacitor Application,” Ceram. Int., 44(12), pp. 13879–13887. [CrossRef]
Yin, J. , Zheng, C. , Qi, L. , and Wang, H. , 2011, “ Concentrated NaClO4 Aqueous Solutions as Promising Electrolytes for Electric Double-Layer Capacitors,” J. Power Sources, 196(8), pp. 4080–4087. [CrossRef]
Zheng, C. , Qi, L. , Yoshio, M. , and Wang, H. , 2010, “ Cooperation of Micro-and Meso-Porous Carbon Electrode Materials in Electric Double-Layer Capacitors,” J. Power Sources, 195(13), pp. 4406–4409. [CrossRef]
Yu, C. , Masarapu, C. , Rong, J. , Wei, B. , and Jiang, H. , 2009, “ Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms,” Adv. Mater., 21(47), pp. 4793–4797. [CrossRef] [PubMed]
Wang, H. , Liang, Y. , Mirfakhrai, T. , Chen, Z. , Casalongue, H. S. , and Dai, H. , 2011, “ Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials,” Nano Res., 4(8), pp. 729–736. [CrossRef]
Du, X. , Wang, C. , Chen, M. , Jiao, Y. , and Wang, J. , 2009, “ Electrochemical Performances of Nanoparticle Fe3O4/Activated Carbon Supercapacitor Using KOH Electrolyte Solution,” J. Phys. Chem. C, 113(6), p. 2643. [CrossRef]
Tang, C. , Tang, Z. , and Gong, H. , 2012, “ Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors,” J. Electrochem. Soc., 159(5), pp. A651–A656. [CrossRef]
Qu, Q. , Zhang, P. , Wang, B. , Chen, Y. , Tian, S. , Wu, Y. , and Holze, R. , 2009, “ Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors,” J. Phys. Chem. C, 113(31), pp. 14020–14027. [CrossRef]
Fan, Z. , Yan, J. , Wei, T. , Zhi, L. , Ning, G. , Li, T. , and Wei, F. , 2011, “ Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes With High Power and Energy Density,” Adv. Funct. Mater., 21(12), pp. 2366–2375. [CrossRef]
Ede, S. R. , Ramadoss, A. , Nithiyanantham, U. , Anantharaj, S. , and Kundu, S. , 2015, “ Bio-Molecule Assisted Aggregation of ZnWO4 Nanoparticles (NPs) Into Chain-Like Assemblies: Material for High Performance Supercapacitor and as Catalyst for Benzyl Alcohol Oxidation,” Inorg. Chem., 54(8), pp. 3851–3863. [CrossRef] [PubMed]
Xiao, W. , Xia, H. , Fuh, J. Y. , and Lu, L. , 2009, “ Growth of Single-Crystal α-MnO2 Nanotubes Prepared by a Hydrothermal Route and Their Electrochemical Properties,” J. Power Sources, 193(2), pp. 935–938. [CrossRef]
Zhou, E. , Wang, C. , Zhao, Q. , Li, Z. , Shao, M. , Deng, X. , Liu, X. , and Xu, X. , 2016, “ Facile Synthesis of MoO2 Nanoparticles as High Performance Supercapacitor Electrodes and Photocatalysts,” Ceram. Int., 42(2), pp. 2198–2203. [CrossRef]
Xie, Y. , Huang, C. , Zhou, L. , Liu, Y. , and Huang, H. , 2009, “ Supercapacitor Application of Nickel Oxide–Titania Nanocomposites,” Compos. Sci. Technol., 69(13), pp. 2108–2114. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic illustration of the synthesis procedure of Fe(NO3)2–NiO nanoparticles

Grahic Jump Location
Fig. 2

Schematic representation of electrode fabrication

Grahic Jump Location
Fig. 3

X-ray diffraction patterns of Fe(NO3)2–NiO nanoparticles

Grahic Jump Location
Fig. 4

(a)–(d) Scanning electron microscope images of Fe(NO3)2–NiO nanoparticles at different resolutions

Grahic Jump Location
Fig. 5

Energy dispersive X-ray spectrum Fe(NO3)2–NiO nanoparticles with elemental composition (inset)

Grahic Jump Location
Fig. 6

Cyclic voltammetry analysis of Fe(NO3)2–NiO at scan rates of 1–50 mV s−1

Grahic Jump Location
Fig. 7

Galvanostatic charge–discharge of Fe(NO3)2–NiO at current densities of 1–5 A g−1

Grahic Jump Location
Fig. 8

Electrochemical impedance spectroscopy (Nyquist plot) of the Fe(NO3)2–NiO electrode material at low-frequency range and high-frequency range (inset)

Grahic Jump Location
Fig. 9

Coulombic efficiency and cyclic performance of Fe(NO3)2–NiO symmetric capacitor at 5 A g−1

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In