0
Research Papers

Experimental Studies of Carbon Electrodes With Various Surface Area for Li–O2 Batteries

[+] Author and Article Information
Fangzhou Wang

Department of Mechanical Engineering,
University of Kansas,
Lawrence, KS 66046
e-mail: fangzhouwang@ku.edu

P. K. Kahol

Department of Physics,
Pittsburg State University,
Pittsburg, KS 66762
e-mail: pkahol@pittstate.edu

Ram Gupta

Department of Chemistry,
Pittsburg State University,
Pittsburg, KS 66762
e-mail: rgupta@pittstate.edu

Xianglin Li

Department of Mechanical Engineering,
University of Kansas,
Lawrence, KS 66046
e-mail: xianglinli@ku.edu

1Corresponding author.

Manuscript received October 22, 2018; final manuscript received March 17, 2019; published online April 12, 2019. Assoc. Editor: Leela Mohana Reddy Arava.

J. Electrochem. En. Conv. Stor. 16(4), 041007 (Apr 12, 2019) (7 pages) Paper No: JEECS-18-1114; doi: 10.1115/1.4043229 History: Received October 22, 2018; Accepted March 18, 2019

Li−O2 batteries with carbon electrodes made from three commercial carbons and carbon made from waste tea leaves are investigated in this study. The waste tea leaves are recycled from household tea leaves and activated using KOH. The carbon materials have various specific surface areas, and porous structures are characterized by the N2 adsorption/desorption. Vulcan XC 72 carbon shows a higher specific surface area (264.1 m2/g) than the acetylene black (76.5 m2/g) and Super P (60.9 m2/g). The activated tea leaves have an extremely high specific surface area of 2868.4 m2/g. First, we find that the commercial carbons achieve similar discharge capacities of ∼2.50 Ah/g at 0.5 mA/cm2. The micropores in carbon materials result in a high specific surface area but cannot help to achieve higher discharge capacity because it cannot accommodate the solid discharge product (Li2O2). Mixing the acetylene black and the Vulcan XC 72 improves the discharge capacity due to the optimized porous structure. The discharge capacity increases by 42% (from 2.73 ± 0.46 to 3.88 ± 0.22 Ah/g) at 0.5 mA/cm2 when the mass fraction of Vulcan XC 72 changes from 0 to 0.3. Second, the electrode made from activated tea leaves is demonstrated for the first time in Li−O2 batteries. Mixtures of activated tea leaves and acetylene black confirm that mixtures of carbon material with different specific surface areas can increase the discharge capacity. Moreover, carbon made from recycled tea leaves can reduce the cost of the electrode, making electrodes more economically achievable. This study practically enhances the discharge capacity of Li−O2 batteries using mixed carbons and provides a method for fabricating carbon electrodes with lower cost and better environmental friendliness.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hannan, M., Hoque, M., Mohamed, A., and Ayob, A., 2017, “Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges,” Renew. Sustain. Energy Rev., 69, pp. 771–789. [CrossRef]
Andre, D., Kim, S.-J., Lamp, P., Lux, S. F., Maglia, F., Paschos, O., and Stiaszny, B., 2015, “Future Generations of Cathode Materials: An Automotive Industry Perspective,” J. Mater. Chem. A, 3(13), pp. 6709–6732. [CrossRef]
Aurbach, D., McCloskey, B. D., Nazar, L. F., and Bruce, P. G., 2016, “Advances in Understanding Mechanisms Underpinning Lithium–Air Batteries,” Nat. Energy, 1(9), p. 16128. [CrossRef]
Eftekhari, A., 2018, “On the Theoretical Capacity/Energy of Lithium Batteries and Their Counterparts,” ACS Sustain. Chem. Eng. 7(4), pp. 3684–3687. [CrossRef]
Nitta, N., Wu, F., Lee, J. T., and Yushin, G., 2015, “Li-Ion Battery Materials: Present and Future,” Mater. Today, 18(5), pp. 252–264. [CrossRef]
Hu, L.-H., Wu, F.-Y., Lin, C.-T., Khlobystov, A. N., and Li, L.-J., 2013, “Graphene-Modified LiFePO4 Cathode for Lithium Ion Battery Beyond Theoretical Capacity,” Nat. Commun., 4, p. 1687. [CrossRef] [PubMed]
Chase, M. W., Jr., 1998, NIST-JANAF Thermochemical Tables (J. Phys. Chem. Ref. Data, Monograph 9), American Institute of Physics, College Park, MD.
Bruce, P. G., Freunberger, S. A., Hardwick, L. J., and Tarascon, J.-M., 2012, “Li–O2 and Li–S Batteries With High Energy Storage,” Nat. Mater., 11(1), pp. 19–29. [CrossRef]
Lu, J., Li, L., Park, J.-B., Sun, Y.-K., Wu, F., and Amine, K., 2014, “Aprotic and Aqueous Li–O2 Batteries,” Chem. Rev., 114(11), pp. 5611–5640. [CrossRef] [PubMed]
Kundu, D., Black, R., Adams, B., Harrison, K., Zavadil, K., and Nazar, L. F., 2015, “Nanostructured Metal Carbides for Aprotic Li–O2 Batteries: New Insights Into Interfacial Reactions and Cathode Stability,” J. Phys. Chem. Lett., 6(12), pp. 2252–2258. [CrossRef] [PubMed]
Luo, L., Liu, B., Song, S., Xu, W., Zhang, J.-G., and Wang, C., 2017, “Revealing the Reaction Mechanisms of Li–O2 Batteries Using Environmental Transmission Electron Microscopy,” Nat. Nanotechnol., 12(6), pp. 535–539. [CrossRef] [PubMed]
Imanishi, N., and Yamamoto, O., 2014, “Rechargeable Lithium–Air Batteries: Characteristics and Prospects,” Mater. Today, 17(1), pp. 24–30. [CrossRef]
Zhang, Z., Lu, J., Assary, R. S., Du, P., Wang, H.-H., Sun, Y.-K., Qin, Y., Lau, K. C., Greeley, J., and Redfern, P. C., 2011, “Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries With Oligoether-Functionalized Silane Electrolytes,” J. Phys. Chem. C, 115(51), pp. 25535–25542. [CrossRef]
Aurbach, D., Zinigrad, E., Cohen, Y., and Teller, H., 2002, “A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions,” Solid State Ionics, 148(3–4), pp. 405–416. [CrossRef]
Yamaki, J.-I., Tobishima, S.-I., Hayashi, K., Saito, K., Nemoto, Y., and Arakawa, M., 1998, “A Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte,” J. Power Sources, 74(2), pp. 219–227. [CrossRef]
Chatterjee, A., Or, S. W., and Cao, Y., 2018, “Transition Metal Hollow Nanocages as Promising Cathodes for the Long-Term Cyclability of Li–O2 Batteries,” Nanomaterials, 8(5), p. 308. [CrossRef]
Li, F., Tang, D.-M., Chen, Y., Golberg, D., Kitaura, H., Zhang, T., Yamada, A., and Zhou, H., 2013, “Ru/ITO: A Carbon-Free Cathode for Nonaqueous Li–O2 Battery,” Nano Lett., 13(10), pp. 4702–4707. [CrossRef] [PubMed]
Lu, X., Yin, Y., Zhang, L., Huang, S., Xi, L., Liu, L., Oswald, S., and Schmidt, O. G., 2019, “3D Ag/NiO-Fe2O3/Ag Nanomembranes as Carbon-Free Cathode Materials for Li-O2 Batteries,” Energy Storage Mater., 16, pp. 155–162. [CrossRef]
Sakai, K., Iwamura, S., and Mukai, S. R., 2017, “Influence of the Porous Structure of the Cathode on the Discharge Capacity of Lithium-Air Batteries,” J. Electrochem. Soc., 164(13), pp. A3075–A3080. [CrossRef]
Zhai, D., Wang, H.-H., Yang, J., Lau, K. C., Li, K., Amine, K., and Curtiss, L. A., 2013, “Disproportionation in Li–O2 Batteries Based on a Large Surface Area Carbon Cathode,” J. Am. Chem. Soc., 135(41), pp. 15364–15372. [CrossRef] [PubMed]
Xiao, J., Wang, D., Xu, W., Wang, D., Williford, R. E., Liu, J., and Zhang, J.-G., 2010, “Optimization of Air Electrode for Li/Air Batteries,” J. Electrochem. Soc., 157(4), pp. A487–A492. [CrossRef]
Meini, S., Piana, M., Beyer, H., Schwämmlein, J., and Gasteiger, H. A., 2012, “Effect of Carbon Surface Area on First Discharge Capacity of Li-O2 Cathodes and Cycle-Life Behavior in Ether-Based Electrolytes,” J. Electrochem. Soc., 159(12), pp. A2135–A2142. [CrossRef]
Pan, W., Yang, X., Bao, J., and Wang, M., 2017, “Optimizing Discharge Capacity of Li-O2 Batteries by Design of Air-Electrode Porous Structure: Multifidelity Modeling and Optimization,” J. Electrochem. Soc., 164(11), pp. E3499–E3511. [CrossRef]
Li, X., 2015, “A Modeling Study of the Pore Size Evolution in Lithium-Oxygen Battery Electrodes,” J. Electrochem. Soc., 162(8), pp. A1636–A1645. [CrossRef]
Li, X., and Faghri, A., 2012, “Optimization of the Cathode Structure of Lithium-Air Batteries Based on a Two-Dimensional, Transient, Non-Isothermal Model,” J. Electrochem. Soc., 159(10), pp. A1747–A1754. [CrossRef]
Talapaneni, S. N., Lee, J. H., Je, S. H., Buyukcakir, O., Kwon, T. W., Polychronopoulou, K., Choi, J. W., and Coskun, A., 2017, “Chemical Blowing Approach for Ultramicroporous Carbon Nitride Frameworks and Their Applications in Gas and Energy Storage,” Adv. Funct. Mater., 27(1), p. 1604658. [CrossRef]
Talapaneni, S. N., Hwang, T. H., Je, S. H., Buyukcakir, O., Choi, J. W., and Coskun, A., 2016, “Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium–Sulfur Batteries,” Angew. Chem. Int. Ed., 55(9), pp. 3106–3111. [CrossRef]
Wang, F., and Li, X., 2018, “Effects of the Electrode Wettability on the Deep Discharge Capacity of Li–O2 Batteries,” ACS Omega, 3(6), pp. 6006–6012. [CrossRef]
Wang, F., and Li, X., 2018, “Discharge Li-O2 Batteries With Intermittent Current,” J. Power Sources, 394, pp. 50–56. [CrossRef]
Wang, F., and Li, X., 2018, “Pore Scale Simulations of Porous Electrodes of Li–O2 Batteries at Different Saturation Levels,” ACS Appl. Mater. Interfaces, 10(31), pp. 26222–26232. [CrossRef] [PubMed]
Zhang, G., Zheng, J., Liang, R., Zhang, C., Wang, B., Hendrickson, M. A., and Plichta, E., 2010, “Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes,” J. Electrochem. Soc., 157(8), pp. A953–A956. [CrossRef]
Beattie, S., Manolescu, D., and Blair, S., 2009, “High-Capacity Lithium–Air Cathodes,” J. Electrochem. Soc., 156(1), pp. A44–A47. [CrossRef]
Cheng, H., and Scott, K., 2010, “Carbon-Supported Manganese Oxide Nanocatalysts for Rechargeable Lithium–Air Batteries,” J. Power Sources, 195(5), pp. 1370–1374. [CrossRef]
Yang, X.-H., He, P., and Xia, Y.-Y., 2009, “Preparation of Mesocellular Carbon Foam and Its Application for Lithium/Oxygen Battery,” Electrochem. Commun., 11(6), pp. 1127–1130. [CrossRef]
Huang, J., Tong, B., Li, Z., Zhou, T., Zhang, J., and Peng, Z., 2018, “Probing the Reaction Interface in Li–Oxygen Batteries Using Dynamic Electrochemical Impedance Spectroscopy: Discharge-Charge Asymmetry in Reaction Sites and Electronic Conductivity,” J. Phys. Chem. Lett., 9(12), pp. 3403–3408. [CrossRef] [PubMed]
Sandhu, S. S., Fellner, J. P., and Brutchen, G. W., 2007, “Diffusion-Limited Model for a Lithium/Air Battery With an Organic Electrolyte,” J. Power Sources, 164(1), pp. 365–371. [CrossRef]
Albertus, P., Girishkumar, G., McCloskey, B., Sánchez-Carrera, R. S., Kozinsky, B., Christensen, J., and Luntz, A. C., 2011, “Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling,” J. Electrochem. Soc., 158(3), pp. A343–A351. [CrossRef]
Hummelshøj, J. S., Blomqvist, J., Datta, S., Vegge, T., Rossmeisl, J., Thygesen, K. S., Luntz, A., Jacobsen, K. W., and Nørskov, J. K., 2010, “Communications: Elementary Oxygen Electrode Reactions in the Aprotic Li-Air Battery,” J. Chem. Phys., 132, p. 071101. [CrossRef] [PubMed]
Adams, B. D., Radtke, C., Black, R., Trudeau, M. L., Zaghib, K., and Nazar, L. F., 2013, “Current Density Dependence of Peroxide Formation in the Li–O2 Battery and Its Effect on Charge,” Energy Environ. Sci., 6(6), pp. 1772–1778. [CrossRef]
Chen, W., Zhang, Z., Bao, W., Lai, Y., Li, J., Gan, Y., and Wang, J., 2014, “Hierarchical Mesoporous γ-Fe2O3/Carbon Nanocomposites Derived From Metal Organic Frameworks as a Cathode Electrocatalyst for Rechargeable Li-O2 Batteries,” Electrochim. Acta, 134, pp. 293–301. [CrossRef]
Li, Q., Xu, P., Gao, W., Ma, S., Zhang, G., Cao, R., Cho, J., Wang, H. L., and Wu, G., 2014, “Graphene/Graphene-Tube Nanocomposites Templated From Cage-Containing Metal-Organic Frameworks for Oxygen Reduction in Li–O2 Batteries,” Adv. Mater., 26(9), pp. 1378–1386. [CrossRef] [PubMed]
Kuboki, T., Okuyama, T., Ohsaki, T., and Takami, N., 2005, “Lithium-Air Batteries Using Hydrophobic Room Temperature Ionic Liquid Electrolyte,” J. Power Sources, 146(1–2), pp. 766–769. [CrossRef]
Zhang, Y., Zhang, H., Li, J., Wang, M., Nie, H., and Zhang, F., 2013, “The Use of Mixed Carbon Materials With Improved Oxygen Transport in a Lithium-Air Battery,” J. Power Sources, 240, pp. 390–396. [CrossRef]
Olivares-Marín, M., Palomino, P., Enciso, E., and Tonti, D., 2014, “Simple Method to Relate Experimental Pore Size Distribution and Discharge Capacity in Cathodes for Li/O2 Batteries,” J. Phys. Chem. C, 118(36), pp. 20772–20783. [CrossRef]
Bhoyate, S., Ranaweera, C. K., Zhang, C., Morey, T., Hyatt, M., Kahol, P. K., Ghimire, M., Mishra, S. R., and Gupta, R. K., 2017, “Eco-Friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves,” Global Challenges, 1(8), p. 1700063. [CrossRef]
Black, R., Oh, S. H., Lee, J.-H., Yim, T., Adams, B., and Nazar, L. F., 2012, “Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization,” J. Am. Chem. Soc., 134(6), pp. 2902–2905. [CrossRef] [PubMed]
Mohazabrad, F., Wang, F., and Li, X., 2017, “Influence of the Oxygen Electrode Open Ratio and Electrolyte Evaporation on the Performance of Li–O2 Batteries,” ACS Appl. Mater. Interfaces, 9(18), pp. 15459–15469. [CrossRef] [PubMed]
Mohazabrad, F., Wang, F., and Li, X., 2016, “Experimental Studies of Salt Concentration in Electrolyte on the Performance of Li-O2 Batteries at Various Current Densities,” J. Electrochem. Soc., 163(13), pp. A2623–A2627. [CrossRef]
Dicks, A. L., 2006, “The Role of Carbon in Fuel Cells,” J. Power Sources, 156(2), pp. 128–141. [CrossRef]
Wagner, F. T., Lakshmanan, B., and Mathias, M. F., 2010, “Electrochemistry and the Future of the Automobile,” J. Phys. Chem. Lett., 1(14), pp. 2204–2219. [CrossRef]
Li, L., Chen, C., Chen, X., Zhang, X., Huang, T., and Yu, A., 2018, “Structure and Catalyst Effects on the Electrochemical Performance of Air Electrodes in Lithium-Oxygen Batteries,” ChemElectroChem, 5(18), pp. 2666–2671. [CrossRef]
Lim, H. D., Park, K. Y., Song, H., Jang, E. Y., Gwon, H., Kim, J., Kim, Y. H., Lima, M. D., Robles, R. O., and Lepró, X., 2013, “Enhanced Power and Rechargeability of a Li−O2 Battery Based on a Hierarchical-Fibril CNT Electrode,” Adv. Mater., 25(9), pp. 1348–1352. [CrossRef] [PubMed]
Wang, Z. L., Xu, D., Xu, J. J., Zhang, L. L., and Zhang, X. B., 2012, “Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries,” Adv. Funct. Mater., 22(17), pp. 3699–3705. [CrossRef]
Song, H., Xu, S., Li, Y., Dai, J., Gong, A., Zhu, M., Zhu, C., Chen, C., Chen, Y., and Yao, Y., 2018, “Hierarchically Porous, Ultrathick, “Breathable” Wood-Derived Cathode for Lithium-Oxygen Batteries,” Adv. Energy Mater., 8(4), p. 1701203. [CrossRef]
Zhu, C., Du, L., Luo, J., Tang, H., Cui, Z., Song, H., and Liao, S., 2018, “A Renewable Wood-Derived Cathode for Li–O2 Batteries,” J. Mater. Chem. A, 6(29), pp. 14291–14298. [CrossRef]
Peng, C., Yan, X.-B., Wang, R.-T., Lang, J.-W., Ou, Y.-J., and Xue, Q.-J., 2013, “Promising Activated Carbons Derived From Waste Tea-Leaves and Their Application in High Performance Supercapacitors Electrodes,” Electrochim. Acta, 87, pp. 401–408. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The schematic of the Li−O2 battery [47,48]

Grahic Jump Location
Fig. 2

Results of (a) BET specific surface area, (b) BJH pore size distribution of different carbon samples except for tea carbon, and (c) BJH pore size distribution of tea carbon

Grahic Jump Location
Fig. 3

Isotherms of different carbon samples

Grahic Jump Location
Fig. 4

SEM images of different carbon samples

Grahic Jump Location
Fig. 5

Discharge capacities of Li−O2 batteries with electrodes coated by commercial carbons at 0.5 mA/cm2

Grahic Jump Location
Fig. 6

Discharge capacities of Li−O2 batteries with electrodes coated by acetylene black, mixture_1, mixture_2, and mixture_3 at 0.5 mA/cm2 (mixture_1: 90% acetylene black + 10% Vulcan XC 72; mixture_2: 80% acetylene black + 20% Vulcan XC 72; mixture_3: 70% acetylene black + 30% Vulcan XC 72)

Grahic Jump Location
Fig. 7

Discharge curves of Li−O2 batteries with activated tea leaves’ electrodes and mixtures at 0.1 mA/cm2

Grahic Jump Location
Fig. 8

Discharge curves of Li−O2 batteries with activated tea leaves’ electrodes and commercial carbon electrodes at 0.5 mA/cm2

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In